/*
* Copyright (c) 2023, Sönke Holz <sholz8530@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/BitCast.h>
#include <AK/Format.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
#include <AK/Platform.h>
VALIDATE_IS_RISCV64()
// Documentation for the CSRs:
// RISC-V ISA Manual, Volume II (https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf)
namespace Kernel::RISCV64::CSR {
// 2.2 CSR Listing
enum class Address : u16 {
// Unprivileged Vector CSRs
VSTART_ = 0x008,
VCSR = 0x00f,
VL = 0xc20,
VTYPE = 0xc21,
VLENB = 0xc22,
// Unprivileged Counters/Timers
CYCLE = 0xc00,
TIME = 0xc01,
// Supervisor Trap Setup
SSTATUS = 0x100,
SIE = 0x104,
STVEC = 0x105,
STIMECMP = 0x14d,
// Supervisor Protection and Translation
SATP = 0x180,
};
template<Address address>
ALWAYS_INLINE FlatPtr read()
{
FlatPtr ret;
asm volatile("csrr %0, %1"
: "=r"(ret)
: "i"(address));
return ret;
}
template<Address address>
ALWAYS_INLINE void write(FlatPtr value)
{
asm volatile("csrw %0, %1" ::"i"(address), "Kr"(value));
}
template<Address address>
ALWAYS_INLINE FlatPtr read_and_set_bits(FlatPtr bit_mask)
{
FlatPtr ret;
asm volatile("csrrs %0, %1, %2"
: "=r"(ret)
: "i"(address), "Kr"(bit_mask));
return ret;
}
template<Address address, Enum E>
requires(IsSame<UnderlyingType<E>, FlatPtr>)
ALWAYS_INLINE void set_bits(E bit_mask)
{
asm volatile("csrs %0, %1" ::"i"(address), "Kr"(bit_mask));
}
template<Address address, Enum E>
requires(IsSame<UnderlyingType<E>, FlatPtr>)
ALWAYS_INLINE void clear_bits(E bit_mask)
{
asm volatile("csrc %0, %1" ::"i"(address), "Kr"(bit_mask));
}
// 4.1.11 Supervisor Address Translation and Protection (satp) Register
struct SATP {
enum class Mode : u64 {
Bare = 0,
Sv39 = 8,
Sv48 = 9,
Sv57 = 10,
};
// Physical page number of root page table
u64 PPN : 44;
// Address space identifier
u64 ASID : 16;
// Current address-translation scheme
Mode MODE : 4;
static ALWAYS_INLINE void write(SATP satp)
{
CSR::write<Address::SATP>(bit_cast<FlatPtr>(satp));
}
static ALWAYS_INLINE SATP read()
{
return bit_cast<SATP>(CSR::read<Address::SATP>());
}
bool operator==(SATP const& other) const = default;
};
static_assert(AssertSize<SATP, 8>());
// 4.1.1 Supervisor Status Register (sstatus)
struct SSTATUS {
// Useful for CSR::{set,clear}_bits
enum class Bit : u64 {
SIE = 1 << 1,
SPIE = 1 << 5,
UBE = 1 << 6,
SPP = 1 << 8,
VS = 1 << 9,
FS = 1 << 13,
XS = 1 << 15,
SUM = 1 << 18,
MXR = 1 << 19,
UXL = 1ull << 32,
SD = 1ull << 63,
};
enum class PrivilegeMode : u64 {
User = 0,
Supervisor = 1,
};
enum class FloatingPointStatus : u64 {
Off = 0,
Initial = 1,
Clean = 2,
Dirty = 3,
};
enum class VectorStatus : u64 {
Off = 0,
Initial = 1,
Clean = 2,
Dirty = 3,
};
enum class UserModeExtensionsStatus : u64 {
AllOff = 0,
NoneDirtyOrClean_SomeOn = 1,
NoneDirty_SomeOn = 2,
SomeDirty = 3,
};
enum class XLEN : u64 {
Bits32 = 1,
Bits64 = 2,
Bits128 = 3,
};
u64 _reserved0 : 1;
// Enables or disables all interrupts in supervisor mode
u64 SIE : 1;
u64 _reserved2 : 3;
// Indicates whether supervisor interrupts were enabled prior to trapping into supervisor mode
// When a trap is taken into supervisor mode, SPIE is set to SIE, and SIE is set to 0. When
// an SRET instruction is executed, SIE is set to SPIE, then SPIE is set to 1.
u64 SPIE : 1;
// Controls the endianness of explicit memory accesses made from
// U-mode, which may differ from the endianness of memory accesses in S-mode
u64 UBE : 1;
u64 _reserved7 : 1;
// Indicates the privilege level at which a hart was executing before entering supervisor mode
PrivilegeMode SPP : 1;
// Encodes the status of the vector extension state, including the vector registers v0–v31 and
// the CSRs vcsr, vxrm, vxsat, vstart, vl, vtype, and vlenb.
VectorStatus VS : 2;
u64 _reserved11 : 2;
// Encodes the status of the floating-point unit state,
// including the floating-point registers f0–f31 and the CSRs fcsr, frm, and fflags.
FloatingPointStatus FS : 2;
// The XS field encodes the status of additional user-mode extensions and associated state.
UserModeExtensionsStatus XS : 2;
u64 _reserved17 : 1;
// The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode
// loads and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
// accessible by U-mode (U=1 in Figure 5.18) will fault. When SUM=1, these accesses are permitted.
// SUM has no effect when page-based virtual memory is not in effect, nor when executing in U-mode.
// Note that S-mode can never execute instructions from user pages, regardless of the state of SUM.
u64 SUM : 1;
// The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
// memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 5.18) will succeed.
// When MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed.
// MXR has no effect when page-based virtual memory is not in effect.
u64 MXR : 1;
u64 _reserved20 : 12;
// Controls the value of XLEN for U-mode
XLEN UXL : 2;
u64 _reserved34 : 29;
// The SD bit is a read-only bit that summarizes whether either the FS, VS, or XS fields signal the
// presence of some dirty state that will require saving extended user context to memory.
u64 SD : 1;
static ALWAYS_INLINE void write(SSTATUS sstatus)
{
CSR::write<Address::SSTATUS>(bit_cast<FlatPtr>(sstatus));
}
static ALWAYS_INLINE SSTATUS read()
{
return bit_cast<SSTATUS>(CSR::read<Address::SSTATUS>());
}
};
static_assert(AssertSize<SSTATUS, 8>());
// 4.1.8 Supervisor Cause Register (scause)
constexpr u64 SCAUSE_INTERRUPT_MASK = 1LU << 63;
enum class SCAUSE : u64 {
// Interrupts
// 0 Reserved
SupervisorSoftwareInterrupt = SCAUSE_INTERRUPT_MASK | 1,
// 2-4 Reserved
SupervisorTimerInterrupt = SCAUSE_INTERRUPT_MASK | 5,
// 6-8 Reserved
SupervisorExternalInterrupt = SCAUSE_INTERRUPT_MASK | 9,
// 10-12 Reserved
CounterOverflowInterrupt = SCAUSE_INTERRUPT_MASK | 13,
// 14-15 Reserved
// >= 16 Designated for platform use
// Exceptions
InstructionAddressMisaligned = 0,
InstructionAccessFault = 1,
IllegalInstrction = 2,
Breakpoint = 3,
LoadAddressMisaligned = 4,
LoadAccessFault = 5,
StoreOrAMOAddressMisaligned = 6,
StoreOrAMOAccessFault = 7,
EnvironmentCallFromUMode = 8,
EnvironmentCallFromSMode = 9,
// 10-11 Reserved
InstructionPageFault = 12,
LoadPageFault = 13,
// 14 Reserved
StoreOrAMOPageFault = 15,
// 16-17 Reserved
SoftwareCheck = 18,
HardwareError = 19,
// 20-23 Reserved
// 24-31 Designated for custom use
// 32-47 Reserved
// 48-63 Designated for custom use
// >= 64 Reserved
};
enum class SIE : u64 {
SupervisorSoftwareInterrupt = 1 << 1,
SupervisorTimerInterrupt = 1 << 5,
SupervisorExternalInterrupt = 1 << 9,
LocalCounterOverflowInterrupt = 1 << 13,
};
}
template<>
struct AK::Formatter<Kernel::RISCV64::CSR::SSTATUS> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::RISCV64::CSR::SSTATUS value)
{
if (value.SD)
TRY(builder.put_literal("SD "sv));
switch (value.UXL) {
case Kernel::RISCV64::CSR::SSTATUS::XLEN::Bits32:
TRY(builder.put_literal("UXL=32 "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::XLEN::Bits64:
TRY(builder.put_literal("UXL=64 "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::XLEN::Bits128:
TRY(builder.put_literal("UXL=128 "sv));
break;
}
if (value.MXR)
TRY(builder.put_literal("MXR "sv));
if (value.SUM)
TRY(builder.put_literal("SUM "sv));
switch (value.XS) {
case Kernel::RISCV64::CSR::SSTATUS::UserModeExtensionsStatus::AllOff:
TRY(builder.put_literal("XS=AllOff "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::UserModeExtensionsStatus::NoneDirtyOrClean_SomeOn:
TRY(builder.put_literal("XS=NoneDirtyOrClean_SomeOn "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::UserModeExtensionsStatus::NoneDirty_SomeOn:
TRY(builder.put_literal("XS=NoneDirty_SomeOn "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::UserModeExtensionsStatus::SomeDirty:
TRY(builder.put_literal("XS=SomeDirty "sv));
break;
}
switch (value.FS) {
case Kernel::RISCV64::CSR::SSTATUS::FloatingPointStatus::Off:
TRY(builder.put_literal("FS=Off "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::FloatingPointStatus::Initial:
TRY(builder.put_literal("FS=Initial "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::FloatingPointStatus::Clean:
TRY(builder.put_literal("FS=Clean "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::FloatingPointStatus::Dirty:
TRY(builder.put_literal("FS=Dirty "sv));
break;
}
switch (value.VS) {
case Kernel::RISCV64::CSR::SSTATUS::VectorStatus::Off:
TRY(builder.put_literal("VS=Off "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::VectorStatus::Initial:
TRY(builder.put_literal("VS=Initial "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::VectorStatus::Clean:
TRY(builder.put_literal("VS=Clean "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::VectorStatus::Dirty:
TRY(builder.put_literal("VS=Dirty "sv));
break;
}
switch (value.SPP) {
case Kernel::RISCV64::CSR::SSTATUS::PrivilegeMode::User:
TRY(builder.put_literal("SPP=User "sv));
break;
case Kernel::RISCV64::CSR::SSTATUS::PrivilegeMode::Supervisor:
TRY(builder.put_literal("SPP=Supervisor "sv));
break;
}
if (value.UBE)
TRY(builder.put_literal("UBE "sv));
if (value.SPIE)
TRY(builder.put_literal("SPIE "sv));
if (value.SIE)
TRY(builder.put_literal("SIE "sv));
TRY(builder.put_literal("("sv));
TRY(builder.put_u64(bit_cast<u64>(value), 16, true, false, true, false, FormatBuilder::Align::Right, 16));
TRY(builder.put_literal(")"sv));
return {};
}
};
template<>
struct AK::Formatter<Kernel::RISCV64::CSR::SCAUSE> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder& builder, Kernel::RISCV64::CSR::SCAUSE value)
{
switch (value) {
case Kernel::RISCV64::CSR::SCAUSE::SupervisorSoftwareInterrupt:
return builder.put_string("Supervisor software interrupt"sv);
case Kernel::RISCV64::CSR::SCAUSE::SupervisorTimerInterrupt:
return builder.put_string("Supervisor timer interrupt"sv);
case Kernel::RISCV64::CSR::SCAUSE::SupervisorExternalInterrupt:
return builder.put_string("Supervisor external interrupt"sv);
case Kernel::RISCV64::CSR::SCAUSE::CounterOverflowInterrupt:
return builder.put_string("Counter-overflow interrupt"sv);
case Kernel::RISCV64::CSR::SCAUSE::InstructionAddressMisaligned:
return builder.put_string("Instruction address misaligned"sv);
case Kernel::RISCV64::CSR::SCAUSE::InstructionAccessFault:
return builder.put_string("Instruction access fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::IllegalInstrction:
return builder.put_string("Illegal instruction"sv);
case Kernel::RISCV64::CSR::SCAUSE::Breakpoint:
return builder.put_string("Breakpoint"sv);
case Kernel::RISCV64::CSR::SCAUSE::LoadAddressMisaligned:
return builder.put_string("Load address misaligned"sv);
case Kernel::RISCV64::CSR::SCAUSE::LoadAccessFault:
return builder.put_string("Load access fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::StoreOrAMOAddressMisaligned:
return builder.put_string("Store/AMO address misaligned"sv);
case Kernel::RISCV64::CSR::SCAUSE::StoreOrAMOAccessFault:
return builder.put_string("Store/AMO access fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::EnvironmentCallFromUMode:
return builder.put_string("Environment call from U-mode"sv);
case Kernel::RISCV64::CSR::SCAUSE::EnvironmentCallFromSMode:
return builder.put_string("Environment call from S-mode"sv);
case Kernel::RISCV64::CSR::SCAUSE::InstructionPageFault:
return builder.put_string("Instruction page fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::LoadPageFault:
return builder.put_string("Load page fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::StoreOrAMOPageFault:
return builder.put_string("Store/AMO page fault"sv);
case Kernel::RISCV64::CSR::SCAUSE::SoftwareCheck:
return builder.put_string("Software check"sv);
case Kernel::RISCV64::CSR::SCAUSE::HardwareError:
return builder.put_string("Hardware error"sv);
default:
VERIFY_NOT_REACHED();
}
}
};