/*
* Copyright (c) 2024, Nico Weber <thakis@chromium.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/IntegralMath.h>
#include <AK/Utf16View.h>
#include <LibGfx/ImageFormats/CCITTDecoder.h>
#include <LibGfx/ImageFormats/JBIG2Loader.h>
#include <LibGfx/ImageFormats/QMArithmeticDecoder.h>
#include <LibTextCodec/Decoder.h>
// Spec: ITU-T_T_88__08_2018.pdf in the zip file here:
// https://www.itu.int/rec/T-REC-T.88-201808-I
// Annex H has a datastream example.
// That spec was published in 2018 and contains all previous amendments. Its history is:
// * 2002: Original spec published, describes decoding only. Has generic regions,
// symbol regions, text regions, halftone regions, and pattern regions.
// * 2003: Amendment 1 approved. Describes encoding. Not interesting for us.
// * 2004: (Amendment 1 erratum 1 approved. Not interesting for us.)
// * 2003: Amendment 2 approved. Added support for EXTTEMPLATE.
// * 2011: Amendment 3 approved. Added support for color coding
// (COLEXTFLAG, CPCOMPLEN, CPDEFCOLS, CPEXCOLS, CPNCOMP, CPNVALS, GBCOLS,
// GBCOMBOP, GBFGCOLID, SBCOLS, SBCOLSECTSIZE and SBFGCOLID).
// This history might explain why EXTTEMPLATE and colors are very rare in practice.
namespace Gfx {
namespace JBIG2 {
// Annex A, Arithmetic integer decoding procedure
class ArithmeticIntegerDecoder {
public:
ArithmeticIntegerDecoder(QMArithmeticDecoder&);
// A.2 Procedure for decoding values (except IAID)
// Returns OptionalNone for OOB.
Optional<i32> decode();
// Returns Error for OOB.
ErrorOr<i32> decode_non_oob();
private:
QMArithmeticDecoder& m_decoder;
u16 PREV { 0 };
Vector<QMArithmeticDecoder::Context> contexts;
};
ArithmeticIntegerDecoder::ArithmeticIntegerDecoder(QMArithmeticDecoder& decoder)
: m_decoder(decoder)
{
contexts.resize(1 << 9);
}
Optional<int> ArithmeticIntegerDecoder::decode()
{
// A.2 Procedure for decoding values (except IAID)
// "1) Set:
// PREV = 1"
u16 PREV = 1;
// "2) Follow the flowchart in Figure A.1. Decode each bit with CX equal to "IAx + PREV" where "IAx" represents the identifier
// of the current arithmetic integer decoding procedure, "+" represents concatenation, and the rightmost 9 bits of PREV are used."
auto decode_bit = [&]() {
bool D = m_decoder.get_next_bit(contexts[PREV & 0x1FF]);
// "3) After each bit is decoded:
// If PREV < 256 set:
// PREV = (PREV << 1) OR D
// Otherwise set:
// PREV = (((PREV << 1) OR D) AND 511) OR 256
// where D represents the value of the just-decoded bit.
if (PREV < 256)
PREV = (PREV << 1) | (u16)D;
else
PREV = (((PREV << 1) | (u16)D) & 511) | 256;
return D;
};
auto decode_bits = [&](int n) {
u32 result = 0;
for (int i = 0; i < n; ++i)
result = (result << 1) | decode_bit();
return result;
};
// Figure A.1 – Flowchart for the integer arithmetic decoding procedures (except IAID)
u8 S = decode_bit();
u32 V;
if (!decode_bit())
V = decode_bits(2);
else if (!decode_bit())
V = decode_bits(4) + 4;
else if (!decode_bit())
V = decode_bits(6) + 20;
else if (!decode_bit())
V = decode_bits(8) + 84;
else if (!decode_bit())
V = decode_bits(12) + 340;
else
V = decode_bits(32) + 4436;
// "4) The sequence of bits decoded, interpreted according to Table A.1, gives the value that is the result of this invocation
// of the integer arithmetic decoding procedure."
if (S == 1 && V == 0)
return {};
return S ? -V : V;
}
ErrorOr<i32> ArithmeticIntegerDecoder::decode_non_oob()
{
auto result = decode();
if (!result.has_value())
return Error::from_string_literal("ArithmeticIntegerDecoder: Unexpected OOB");
return result.value();
}
class ArithmeticIntegerIDDecoder {
public:
ArithmeticIntegerIDDecoder(QMArithmeticDecoder&, u32 code_length);
// A.3 The IAID decoding procedure
u32 decode();
private:
QMArithmeticDecoder& m_decoder;
u32 m_code_length { 0 };
Vector<QMArithmeticDecoder::Context> contexts;
};
ArithmeticIntegerIDDecoder::ArithmeticIntegerIDDecoder(QMArithmeticDecoder& decoder, u32 code_length)
: m_decoder(decoder)
, m_code_length(code_length)
{
contexts.resize(1 << (code_length + 1));
}
u32 ArithmeticIntegerIDDecoder::decode()
{
// A.3 The IAID decoding procedure
u32 prev = 1;
for (u8 i = 0; i < m_code_length; ++i) {
bool bit = m_decoder.get_next_bit(contexts[prev]);
prev = (prev << 1) | bit;
}
prev = prev - (1 << m_code_length);
return prev;
}
}
static u8 number_of_context_bits_for_template(u8 template_)
{
if (template_ == 0)
return 16;
if (template_ == 1)
return 13;
VERIFY(template_ == 2 || template_ == 3);
return 10;
}
// JBIG2 spec, Annex D, D.4.1 ID string
static constexpr u8 id_string[] = { 0x97, 0x4A, 0x42, 0x32, 0x0D, 0x0A, 0x1A, 0x0A };
// 7.3 Segment types
enum SegmentType {
SymbolDictionary = 0,
IntermediateTextRegion = 4,
ImmediateTextRegion = 6,
ImmediateLosslessTextRegion = 7,
PatternDictionary = 16,
IntermediateHalftoneRegion = 20,
ImmediateHalftoneRegion = 22,
ImmediateLosslessHalftoneRegion = 23,
IntermediateGenericRegion = 36,
ImmediateGenericRegion = 38,
ImmediateLosslessGenericRegion = 39,
IntermediateGenericRefinementRegion = 40,
ImmediateGenericRefinementRegion = 42,
ImmediateLosslessGenericRefinementRegion = 43,
PageInformation = 48,
EndOfPage = 49,
EndOfStripe = 50,
EndOfFile = 51,
Profiles = 52,
Tables = 53,
ColorPalette = 54,
Extension = 62,
};
// Annex D
enum class Organization {
// D.1 Sequential organization
Sequential,
// D.2 Random-access organization
RandomAccess,
// D.3 Embedded organization
Embedded,
};
struct SegmentHeader {
u32 segment_number { 0 };
SegmentType type { SegmentType::Extension };
Vector<u32> referred_to_segment_numbers;
// 7.2.6 Segment page association
// "The first page must be numbered "1". This field may contain a value of zero; this value indicates that this segment is not associated with any page."
u32 page_association { 0 };
Optional<u32> data_length;
};
class BitBuffer {
public:
static ErrorOr<NonnullOwnPtr<BitBuffer>> create(size_t width, size_t height);
bool get_bit(size_t x, size_t y) const;
void set_bit(size_t x, size_t y, bool b);
void fill(bool b);
ErrorOr<NonnullOwnPtr<BitBuffer>> subbitmap(Gfx::IntRect const& rect) const;
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> to_gfx_bitmap() const;
ErrorOr<ByteBuffer> to_byte_buffer() const;
size_t width() const { return m_width; }
size_t height() const { return m_height; }
private:
BitBuffer(ByteBuffer, size_t width, size_t height, size_t pitch);
ByteBuffer m_bits;
size_t m_width { 0 };
size_t m_height { 0 };
size_t m_pitch { 0 };
};
ErrorOr<NonnullOwnPtr<BitBuffer>> BitBuffer::create(size_t width, size_t height)
{
size_t pitch = ceil_div(width, static_cast<size_t>(8));
auto bits = TRY(ByteBuffer::create_uninitialized(pitch * height));
return adopt_nonnull_own_or_enomem(new (nothrow) BitBuffer(move(bits), width, height, pitch));
}
bool BitBuffer::get_bit(size_t x, size_t y) const
{
VERIFY(x < m_width);
VERIFY(y < m_height);
size_t byte_offset = x / 8;
size_t bit_offset = x % 8;
u8 byte = m_bits[y * m_pitch + byte_offset];
byte = (byte >> (8 - 1 - bit_offset)) & 1;
return byte != 0;
}
void BitBuffer::set_bit(size_t x, size_t y, bool b)
{
VERIFY(x < m_width);
VERIFY(y < m_height);
size_t byte_offset = x / 8;
size_t bit_offset = x % 8;
u8 byte = m_bits[y * m_pitch + byte_offset];
u8 mask = 1u << (8 - 1 - bit_offset);
if (b)
byte |= mask;
else
byte &= ~mask;
m_bits[y * m_pitch + byte_offset] = byte;
}
void BitBuffer::fill(bool b)
{
u8 fill_byte = b ? 0xff : 0;
for (auto& byte : m_bits.bytes())
byte = fill_byte;
}
ErrorOr<NonnullOwnPtr<BitBuffer>> BitBuffer::subbitmap(Gfx::IntRect const& rect) const
{
VERIFY(rect.x() >= 0);
VERIFY(rect.width() >= 0);
VERIFY(static_cast<size_t>(rect.right()) <= width());
VERIFY(rect.y() >= 0);
VERIFY(rect.height() >= 0);
VERIFY(static_cast<size_t>(rect.bottom()) <= height());
auto subbitmap = TRY(create(rect.width(), rect.height()));
for (int y = 0; y < rect.height(); ++y)
for (int x = 0; x < rect.width(); ++x)
subbitmap->set_bit(x, y, get_bit(rect.x() + x, rect.y() + y));
return subbitmap;
}
ErrorOr<NonnullRefPtr<Gfx::Bitmap>> BitBuffer::to_gfx_bitmap() const
{
auto bitmap = TRY(Gfx::Bitmap::create(Gfx::BitmapFormat::BGRx8888, { m_width, m_height }));
for (size_t y = 0; y < m_height; ++y) {
for (size_t x = 0; x < m_width; ++x) {
auto color = get_bit(x, y) ? Color::Black : Color::White;
bitmap->set_pixel(x, y, color);
}
}
return bitmap;
}
ErrorOr<ByteBuffer> BitBuffer::to_byte_buffer() const
{
return ByteBuffer::copy(m_bits);
}
BitBuffer::BitBuffer(ByteBuffer bits, size_t width, size_t height, size_t pitch)
: m_bits(move(bits))
, m_width(width)
, m_height(height)
, m_pitch(pitch)
{
}
class Symbol : public RefCounted<Symbol> {
public:
static NonnullRefPtr<Symbol> create(NonnullOwnPtr<BitBuffer> bitmap)
{
return adopt_ref(*new Symbol(move(bitmap)));
}
BitBuffer const& bitmap() const { return *m_bitmap; }
private:
Symbol(NonnullOwnPtr<BitBuffer> bitmap)
: m_bitmap(move(bitmap))
{
}
NonnullOwnPtr<BitBuffer> m_bitmap;
};
struct SegmentData {
SegmentHeader header;
ReadonlyBytes data;
// Set on dictionary segments after they've been decoded.
Optional<Vector<NonnullRefPtr<Symbol>>> symbols;
// Set on pattern segments after they've been decoded.
Optional<Vector<NonnullRefPtr<Symbol>>> patterns;
};
// 7.4.8.5 Page segment flags
enum class CombinationOperator {
Or = 0,
And = 1,
Xor = 2,
XNor = 3,
Replace = 4,
};
static void composite_bitbuffer(BitBuffer& out, BitBuffer const& bitmap, Gfx::IntPoint position, CombinationOperator operator_)
{
if (!IntRect { position, { bitmap.width(), bitmap.height() } }.intersects(IntRect { { 0, 0 }, { out.width(), out.height() } }))
return;
size_t start_x = 0, end_x = bitmap.width();
size_t start_y = 0, end_y = bitmap.height();
if (position.x() < 0) {
start_x = -position.x();
position.set_x(0);
}
if (position.y() < 0) {
start_y = -position.y();
position.set_y(0);
}
if (position.x() + bitmap.width() > out.width())
end_x = out.width() - position.x();
if (position.y() + bitmap.height() > out.height())
end_y = out.height() - position.y();
for (size_t y = start_y; y < end_y; ++y) {
for (size_t x = start_x; x < end_x; ++x) {
bool bit = bitmap.get_bit(x, y);
switch (operator_) {
case CombinationOperator::Or:
bit = bit || out.get_bit(position.x() + x, position.y() + y);
break;
case CombinationOperator::And:
bit = bit && out.get_bit(position.x() + x, position.y() + y);
break;
case CombinationOperator::Xor:
bit = bit ^ out.get_bit(position.x() + x, position.y() + y);
break;
case CombinationOperator::XNor:
bit = !(bit ^ out.get_bit(position.x() + x, position.y() + y));
break;
case CombinationOperator::Replace:
// Nothing to do.
break;
}
out.set_bit(position.x() + x, position.y() + y, bit);
}
}
}
struct Page {
IntSize size;
// This is never CombinationOperator::Replace for Pages.
CombinationOperator default_combination_operator { CombinationOperator::Or };
OwnPtr<BitBuffer> bits;
};
struct JBIG2LoadingContext {
enum class State {
NotDecoded = 0,
Error,
Decoded,
};
State state { State::NotDecoded };
Organization organization { Organization::Sequential };
Page page;
Optional<u32> number_of_pages;
Vector<SegmentData> segments;
HashMap<u32, u32> segments_by_number;
};
static ErrorOr<void> decode_jbig2_header(JBIG2LoadingContext& context, ReadonlyBytes data)
{
if (!JBIG2ImageDecoderPlugin::sniff(data))
return Error::from_string_literal("JBIG2LoadingContext: Invalid JBIG2 header");
FixedMemoryStream stream(data.slice(sizeof(id_string)));
// D.4.2 File header flags
u8 header_flags = TRY(stream.read_value<u8>());
if (header_flags & 0b11110000)
return Error::from_string_literal("JBIG2LoadingContext: Invalid header flags");
context.organization = (header_flags & 1) ? Organization::Sequential : Organization::RandomAccess;
dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Organization: {} ({})", (int)context.organization, context.organization == Organization::Sequential ? "Sequential" : "Random-access");
bool has_known_number_of_pages = (header_flags & 2) ? false : true;
bool uses_templates_with_12_AT_pixels = (header_flags & 4) ? true : false;
bool contains_colored_region_segments = (header_flags & 8) ? true : false;
// FIXME: Do something with these?
(void)uses_templates_with_12_AT_pixels;
(void)contains_colored_region_segments;
// D.4.3 Number of pages
if (has_known_number_of_pages) {
context.number_of_pages = TRY(stream.read_value<BigEndian<u32>>());
dbgln_if(JBIG2_DEBUG, "JBIG2LoadingContext: Number of pages: {}", context.number_of_pages.value());
}
return {};
}
static ErrorOr<SegmentHeader> decode_segment_header(SeekableStream& stream)
{
// 7.2.2 Segment number
u32 segment_number = TRY(stream.read_value<BigEndian<u32>>());
dbgln_if(JBIG2_DEBUG, "Segment number: {}", segment_number);
// 7.2.3 Segment header flags
u8 flags = TRY(stream.read_value<u8>());
SegmentType type = static_cast<SegmentType>(flags & 0b11'1111);
dbgln_if(JBIG2_DEBUG, "Segment type: {}", (int)type);
bool segment_page_association_size_is_32_bits = (flags & 0b100'0000) != 0;
bool segment_retained_only_by_itself_and_extension_segments = (flags & 0b1000'00000) != 0;
// FIXME: Do something with this?
(void)segment_retained_only_by_itself_and_extension_segments;
// 7.2.4 Referred-to segment count and retention flags
u8 referred_to_segment_count_and_retention_flags = TRY(stream.read_value<u8>());
u32 count_of_referred_to_segments = referred_to_segment_count_and_retention_flags >> 5;
if (count_of_referred_to_segments == 5 || count_of_referred_to_segments == 6)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid count_of_referred_to_segments");
u32 extra_count = 0;
if (count_of_referred_to_segments == 7) {
TRY(stream.seek(-1, SeekMode::FromCurrentPosition));
count_of_referred_to_segments = TRY(stream.read_value<BigEndian<u32>>()) & 0x1FFF'FFFF;
extra_count = ceil_div(count_of_referred_to_segments + 1, 8);
TRY(stream.seek(extra_count, SeekMode::FromCurrentPosition));
}
dbgln_if(JBIG2_DEBUG, "Referred-to segment count: {}", count_of_referred_to_segments);
// 7.2.5 Referred-to segment numbers
Vector<u32> referred_to_segment_numbers;
for (u32 i = 0; i < count_of_referred_to_segments; ++i) {
u32 referred_to_segment_number;
if (segment_number <= 256)
referred_to_segment_number = TRY(stream.read_value<u8>());
else if (segment_number <= 65536)
referred_to_segment_number = TRY(stream.read_value<BigEndian<u16>>());
else
referred_to_segment_number = TRY(stream.read_value<BigEndian<u32>>());
referred_to_segment_numbers.append(referred_to_segment_number);
dbgln_if(JBIG2_DEBUG, "Referred-to segment number: {}", referred_to_segment_number);
}
// 7.2.6 Segment page association
u32 segment_page_association;
if (segment_page_association_size_is_32_bits) {
segment_page_association = TRY(stream.read_value<BigEndian<u32>>());
} else {
segment_page_association = TRY(stream.read_value<u8>());
}
dbgln_if(JBIG2_DEBUG, "Segment page association: {}", segment_page_association);
// 7.2.7 Segment data length
u32 data_length = TRY(stream.read_value<BigEndian<u32>>());
dbgln_if(JBIG2_DEBUG, "Segment data length: {}", data_length);
// FIXME: Add some validity checks:
// - check type is valid
// - check referred_to_segment_numbers are smaller than segment_number
// - 7.3.1 Rules for segment references
// - 7.3.2 Rules for page associations
Optional<u32> opt_data_length;
if (data_length != 0xffff'ffff)
opt_data_length = data_length;
else if (type != ImmediateGenericRegion)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown data length only allowed for ImmediateGenericRegion");
return SegmentHeader { segment_number, type, move(referred_to_segment_numbers), segment_page_association, opt_data_length };
}
static ErrorOr<size_t> scan_for_immediate_generic_region_size(ReadonlyBytes data)
{
// 7.2.7 Segment data length
// "If the segment's type is "Immediate generic region", then the length field may contain the value 0xFFFFFFFF.
// This value is intended to mean that the length of the segment's data part is unknown at the time that the segment header is written (...).
// In this case, the true length of the segment's data part shall be determined through examination of the data:
// if the segment uses template-based arithmetic coding, then the segment's data part ends with the two-byte sequence 0xFF 0xAC followed by a four-byte row count.
// If the segment uses MMR coding, then the segment's data part ends with the two-byte sequence 0x00 0x00 followed by a four-byte row count.
// The form of encoding used by the segment may be determined by examining the eighteenth byte of its segment data part,
// and the end sequences can occur anywhere after that eighteenth byte."
// 7.4.6.4 Decoding a generic region segment
// "NOTE – The sequence 0x00 0x00 cannot occur within MMR-encoded data; the sequence 0xFF 0xAC can occur only at the end of arithmetically-coded data.
// Thus, those sequences cannot occur by chance in the data that is decoded to generate the contents of the generic region."
dbgln_if(JBIG2_DEBUG, "(Unknown data length, computing it)");
if (data.size() < 19 + sizeof(u32))
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Data too short to contain segment data header and end sequence");
// Per 7.4.6.1 Generic region segment data header, this starts with the 17 bytes described in
// 7.4.1 Region segment information field, followed the byte described in 7.4.6.2 Generic region segment flags.
// That byte's lowest bit stores if the segment uses MMR.
u8 flags = data[17];
bool uses_mmr = (flags & 1) != 0;
auto end_sequence = uses_mmr ? to_array<u8>({ 0x00, 0x00 }) : to_array<u8>({ 0xFF, 0xAC });
u8 const* end = static_cast<u8 const*>(memmem(data.data() + 19, data.size() - 19 - sizeof(u32), end_sequence.data(), end_sequence.size()));
if (!end)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Could not find end sequence in segment data");
size_t size = end - data.data() + end_sequence.size() + sizeof(u32);
dbgln_if(JBIG2_DEBUG, "(Computed size is {})", size);
return size;
}
static ErrorOr<void> decode_segment_headers(JBIG2LoadingContext& context, ReadonlyBytes data)
{
FixedMemoryStream stream(data);
Vector<ReadonlyBytes> segment_datas;
auto store_and_skip_segment_data = [&](SegmentHeader const& segment_header) -> ErrorOr<void> {
size_t start_offset = TRY(stream.tell());
u32 data_length = TRY(segment_header.data_length.try_value_or_lazy_evaluated([&]() {
return scan_for_immediate_generic_region_size(data.slice(start_offset));
}));
if (start_offset + data_length > data.size()) {
dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: start_offset={}, data_length={}, data.size()={}", start_offset, data_length, data.size());
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment data length exceeds file size");
}
ReadonlyBytes segment_data = data.slice(start_offset, data_length);
segment_datas.append(segment_data);
TRY(stream.seek(data_length, SeekMode::FromCurrentPosition));
return {};
};
Vector<SegmentHeader> segment_headers;
while (!stream.is_eof()) {
auto segment_header = TRY(decode_segment_header(stream));
segment_headers.append(segment_header);
if (context.organization != Organization::RandomAccess)
TRY(store_and_skip_segment_data(segment_header));
// Required per spec for files with RandomAccess organization.
if (segment_header.type == SegmentType::EndOfFile)
break;
}
if (context.organization == Organization::RandomAccess) {
for (auto const& segment_header : segment_headers)
TRY(store_and_skip_segment_data(segment_header));
}
if (segment_headers.size() != segment_datas.size())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Segment headers and segment datas have different sizes");
for (size_t i = 0; i < segment_headers.size(); ++i) {
context.segments.append({ segment_headers[i], segment_datas[i], {}, {} });
context.segments_by_number.set(segment_headers[i].segment_number, context.segments.size() - 1);
}
return {};
}
// 7.4.1 Region segment information field
struct [[gnu::packed]] RegionSegmentInformationField {
BigEndian<u32> width;
BigEndian<u32> height;
BigEndian<u32> x_location;
BigEndian<u32> y_location;
u8 flags;
CombinationOperator external_combination_operator() const
{
VERIFY((flags & 0x7) <= 4);
return static_cast<CombinationOperator>(flags & 0x7);
}
bool is_color_bitmap() const
{
return (flags & 0x8) != 0;
}
};
static_assert(AssertSize<RegionSegmentInformationField, 17>());
static ErrorOr<RegionSegmentInformationField> decode_region_segment_information_field(ReadonlyBytes data)
{
// 7.4.8 Page information segment syntax
if (data.size() < sizeof(RegionSegmentInformationField))
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field size");
auto result = *(RegionSegmentInformationField const*)data.data();
if ((result.flags & 0b1111'0000) != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field flags");
if ((result.flags & 0x7) > 4)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid region segment information field operator");
// NOTE 3 – If the colour extension flag (COLEXTFLAG) is equal to 1, the external combination operator must be REPLACE.
if (result.is_color_bitmap() && result.external_combination_operator() != CombinationOperator::Replace)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid colored region segment information field operator");
return result;
}
// 7.4.8 Page information segment syntax
struct [[gnu::packed]] PageInformationSegment {
BigEndian<u32> bitmap_width;
BigEndian<u32> bitmap_height;
BigEndian<u32> page_x_resolution; // In pixels/meter.
BigEndian<u32> page_y_resolution; // In pixels/meter.
u8 flags;
BigEndian<u16> striping_information;
};
static_assert(AssertSize<PageInformationSegment, 19>());
static ErrorOr<PageInformationSegment> decode_page_information_segment(ReadonlyBytes data)
{
// 7.4.8 Page information segment syntax
if (data.size() != sizeof(PageInformationSegment))
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid page information segment size");
return *(PageInformationSegment const*)data.data();
}
static ErrorOr<void> scan_for_page_size(JBIG2LoadingContext& context)
{
// We only decode the first page at the moment.
bool found_size = false;
for (auto const& segment : context.segments) {
if (segment.header.type != SegmentType::PageInformation || segment.header.page_association != 1)
continue;
auto page_information = TRY(decode_page_information_segment(segment.data));
// FIXME: We're supposed to compute this from the striping information if it's not set.
if (page_information.bitmap_height == 0xffff'ffff)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle unknown page height yet");
context.page.size = { page_information.bitmap_width, page_information.bitmap_height };
found_size = true;
}
if (!found_size)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No page information segment found for page 1");
return {};
}
static ErrorOr<void> warn_about_multiple_pages(JBIG2LoadingContext& context)
{
HashTable<u32> seen_pages;
Vector<u32> pages;
for (auto const& segment : context.segments) {
if (segment.header.page_association == 0)
continue;
if (seen_pages.contains(segment.header.page_association))
continue;
seen_pages.set(segment.header.page_association);
pages.append(segment.header.page_association);
}
// scan_for_page_size() already checked that there's a page 1.
VERIFY(seen_pages.contains(1));
if (pages.size() == 1)
return {};
StringBuilder builder;
builder.appendff("JBIG2 file contains {} pages ({}", pages.size(), pages[0]);
size_t i;
for (i = 1; i < min(pages.size(), 10); ++i)
builder.appendff(" {}", pages[i]);
if (i != pages.size())
builder.append(" ..."sv);
builder.append("). We will only render page 1."sv);
dbgln("JBIG2ImageDecoderPlugin: {}", TRY(builder.to_string()));
return {};
}
struct AdaptiveTemplatePixel {
i8 x { 0 };
i8 y { 0 };
};
// Figure 7 – Field to which AT pixel locations are restricted
static ErrorOr<void> check_valid_adaptive_template_pixel(AdaptiveTemplatePixel const& adaptive_template_pixel)
{
// Don't have to check < -127 or > 127: The offsets are stored in an i8, so they can't be out of those bounds.
if (adaptive_template_pixel.y > 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Adaptive pixel y too big");
if (adaptive_template_pixel.y == 0 && adaptive_template_pixel.x > -1)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Adaptive pixel x too big");
return {};
}
// 6.2.2 Input parameters
// Table 2 – Parameters for the generic region decoding procedure
struct GenericRegionDecodingInputParameters {
bool is_modified_modified_read { false }; // "MMR" in spec.
u32 region_width { 0 }; // "GBW" in spec.
u32 region_height { 0 }; // "GBH" in spec.
u8 gb_template { 0 };
bool is_typical_prediction_used { false }; // "TPGDON" in spec.
bool is_extended_reference_template_used { false }; // "EXTTEMPLATE" in spec.
Optional<BitBuffer const&> skip_pattern; // "USESKIP", "SKIP" in spec.
Array<AdaptiveTemplatePixel, 12> adaptive_template_pixels; // "GBATX" / "GBATY" in spec.
// FIXME: GBCOLS, GBCOMBOP, COLEXTFLAG
// If is_modified_modified_read is false, generic_region_decoding_procedure() reads data off this decoder.
QMArithmeticDecoder* arithmetic_decoder { nullptr };
};
// 6.2 Generic region decoding procedure
static ErrorOr<NonnullOwnPtr<BitBuffer>> generic_region_decoding_procedure(GenericRegionDecodingInputParameters const& inputs, ReadonlyBytes data, Vector<QMArithmeticDecoder::Context>& contexts)
{
if (inputs.is_modified_modified_read) {
dbgln_if(JBIG2_DEBUG, "JBIG2ImageDecoderPlugin: MMR image data");
// 6.2.6 Decoding using MMR coding
auto buffer = TRY(CCITT::decode_ccitt_group4(data, inputs.region_width, inputs.region_height));
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
size_t bytes_per_row = ceil_div(inputs.region_width, 8);
if (buffer.size() != bytes_per_row * inputs.region_height)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoded MMR data has wrong size");
// FIXME: Could probably just copy the ByteBuffer directly into the BitBuffer's internal ByteBuffer instead.
for (size_t y = 0; y < inputs.region_height; ++y) {
for (size_t x = 0; x < inputs.region_width; ++x) {
bool bit = buffer[y * bytes_per_row + x / 8] & (1 << (7 - x % 8));
result->set_bit(x, y, bit);
}
}
return result;
}
// 6.2.5 Decoding using a template and arithmetic coding
if (inputs.is_extended_reference_template_used)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode EXTTEMPLATE yet");
int number_of_adaptive_template_pixels = inputs.gb_template == 0 ? 4 : 1;
for (int i = 0; i < number_of_adaptive_template_pixels; ++i)
TRY(check_valid_adaptive_template_pixel(inputs.adaptive_template_pixels[i]));
if (inputs.skip_pattern.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode USESKIP yet");
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
static constexpr auto get_pixel = [](NonnullOwnPtr<BitBuffer> const& buffer, int x, int y) -> bool {
if (x < 0 || x >= (int)buffer->width() || y < 0)
return false;
return buffer->get_bit(x, y);
};
// Figure 3(a) – Template when GBTEMPLATE = 0 and EXTTEMPLATE = 0,
constexpr auto compute_context_0 = [](NonnullOwnPtr<BitBuffer> const& buffer, ReadonlySpan<AdaptiveTemplatePixel> adaptive_pixels, int x, int y) -> u16 {
u16 result = 0;
for (int i = 0; i < 4; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x + adaptive_pixels[i].x, y + adaptive_pixels[i].y);
for (int i = 0; i < 3; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2);
for (int i = 0; i < 5; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1);
for (int i = 0; i < 4; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y);
return result;
};
// Figure 4 – Template when GBTEMPLATE = 1
auto compute_context_1 = [](NonnullOwnPtr<BitBuffer> const& buffer, ReadonlySpan<AdaptiveTemplatePixel> adaptive_pixels, int x, int y) -> u16 {
u16 result = 0;
result = (result << 1) | (u16)get_pixel(buffer, x + adaptive_pixels[0].x, y + adaptive_pixels[0].y);
for (int i = 0; i < 4; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2);
for (int i = 0; i < 5; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1);
for (int i = 0; i < 3; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y);
return result;
};
// Figure 5 – Template when GBTEMPLATE = 2
auto compute_context_2 = [](NonnullOwnPtr<BitBuffer> const& buffer, ReadonlySpan<AdaptiveTemplatePixel> adaptive_pixels, int x, int y) -> u16 {
u16 result = 0;
result = (result << 1) | (u16)get_pixel(buffer, x + adaptive_pixels[0].x, y + adaptive_pixels[0].y);
for (int i = 0; i < 3; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 2);
for (int i = 0; i < 4; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y - 1);
for (int i = 0; i < 2; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 2 + i, y);
return result;
};
// Figure 6 – Template when GBTEMPLATE = 3
auto compute_context_3 = [](NonnullOwnPtr<BitBuffer> const& buffer, ReadonlySpan<AdaptiveTemplatePixel> adaptive_pixels, int x, int y) -> u16 {
u16 result = 0;
result = (result << 1) | (u16)get_pixel(buffer, x + adaptive_pixels[0].x, y + adaptive_pixels[0].y);
for (int i = 0; i < 5; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 3 + i, y - 1);
for (int i = 0; i < 4; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 4 + i, y);
return result;
};
u16 (*compute_context)(NonnullOwnPtr<BitBuffer> const&, ReadonlySpan<AdaptiveTemplatePixel>, int, int);
if (inputs.gb_template == 0)
compute_context = compute_context_0;
else if (inputs.gb_template == 1)
compute_context = compute_context_1;
else if (inputs.gb_template == 2)
compute_context = compute_context_2;
else {
VERIFY(inputs.gb_template == 3);
compute_context = compute_context_3;
}
// "The values of the pixels in this neighbourhood define a context. Each context has its own adaptive probability estimate
// used by the arithmetic coder (see Annex E)."
// "* Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set to the value formed by
// concatenating the label "GB" and the 10-16 pixel values gathered in CONTEXT."
// Implementor's note: What this is supposed to mean is that we have a bunch of independent contexts, and we pick the
// context for the current pixel based on pixel values in the neighborhood. The "GB" part just means this context is
// independent from other contexts in the spec. They are passed in to this function.
// Figure 8 – Reused context for coding the SLTP value when GBTEMPLATE is 0
constexpr u16 sltp_context_for_template_0 = 0b10011'0110010'0101;
// Figure 9 – Reused context for coding the SLTP value when GBTEMPLATE is 1
constexpr u16 sltp_context_for_template_1 = 0b0011'110010'101;
// Figure 10 – Reused context for coding the SLTP value when GBTEMPLATE is 2
constexpr u16 sltp_context_for_template_2 = 0b001'11001'01;
// Figure 11 – Reused context for coding the SLTP value when GBTEMPLATE is 3
constexpr u16 sltp_context_for_template_3 = 0b011001'0101;
u16 sltp_context = [](u8 gb_template) {
if (gb_template == 0)
return sltp_context_for_template_0;
if (gb_template == 1)
return sltp_context_for_template_1;
if (gb_template == 2)
return sltp_context_for_template_2;
VERIFY(gb_template == 3);
return sltp_context_for_template_3;
}(inputs.gb_template);
// 6.2.5.7 Decoding the bitmap
QMArithmeticDecoder& decoder = *inputs.arithmetic_decoder;
bool ltp = false; // "LTP" in spec. "Line (uses) Typical Prediction" maybe?
for (size_t y = 0; y < inputs.region_height; ++y) {
if (inputs.is_typical_prediction_used) {
// "SLTP" in spec. "Swap LTP" or "Switch LTP" maybe?
bool sltp = decoder.get_next_bit(contexts[sltp_context]);
ltp = ltp ^ sltp;
if (ltp) {
for (size_t x = 0; x < inputs.region_width; ++x)
result->set_bit(x, y, get_pixel(result, (int)x, (int)y - 1));
continue;
}
}
for (size_t x = 0; x < inputs.region_width; ++x) {
u16 context = compute_context(result, inputs.adaptive_template_pixels, x, y);
bool bit = decoder.get_next_bit(contexts[context]);
result->set_bit(x, y, bit);
}
}
return result;
}
// 6.3.2 Input parameters
// Table 6 – Parameters for the generic refinement region decoding procedure
struct GenericRefinementRegionDecodingInputParameters {
u32 region_width { 0 }; // "GRW" in spec.
u32 region_height { 0 }; // "GRH" in spec.
u8 gr_template { 0 }; // "GRTEMPLATE" in spec.
BitBuffer const* reference_bitmap { nullptr }; // "GRREFERENCE" in spec.
i32 reference_x_offset { 0 }; // "GRREFERENCEDX" in spec.
i32 reference_y_offset { 0 }; // "GRREFERENCEDY" in spec.
bool is_typical_prediction_used { false }; // "TPGDON" in spec.
Array<AdaptiveTemplatePixel, 2> adaptive_template_pixels; // "GRATX" / "GRATY" in spec.
};
// 6.3 Generic Refinement Region Decoding Procedure
static ErrorOr<NonnullOwnPtr<BitBuffer>> generic_refinement_region_decoding_procedure(GenericRefinementRegionDecodingInputParameters& inputs, QMArithmeticDecoder& decoder, Vector<QMArithmeticDecoder::Context>& contexts)
{
VERIFY(inputs.gr_template == 0 || inputs.gr_template == 1);
if (inputs.is_typical_prediction_used)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode typical prediction in generic refinement regions yet");
if (inputs.gr_template == 0) {
TRY(check_valid_adaptive_template_pixel(inputs.adaptive_template_pixels[0]));
// inputs.adaptive_template_pixels[1] is allowed to contain any value.
}
// GRTEMPLATE 1 never uses adaptive pixels.
// 6.3.5.3 Fixed templates and adaptive templates
static constexpr auto get_pixel = [](BitBuffer const& buffer, int x, int y) -> bool {
if (x < 0 || x >= (int)buffer.width() || y < 0 || y >= (int)buffer.height())
return false;
return buffer.get_bit(x, y);
};
// Figure 12 – 13-pixel refinement template showing the AT pixels at their nominal locations
constexpr auto compute_context_0 = [](ReadonlySpan<AdaptiveTemplatePixel> adaptive_pixels, BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 {
u16 result = 0;
for (int dy = -1; dy <= 1; ++dy) {
for (int dx = -1; dx <= 1; ++dx) {
if (dy == -1 && dx == -1)
result = (result << 1) | (u16)get_pixel(reference, reference_x + adaptive_pixels[1].x, reference_y + adaptive_pixels[1].y);
else
result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy);
}
}
result = (result << 1) | (u16)get_pixel(buffer, x + adaptive_pixels[0].x, y + adaptive_pixels[0].y);
for (int i = 0; i < 2; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x + i, y - 1);
result = (result << 1) | (u16)get_pixel(buffer, x - 1, y);
return result;
};
// Figure 13 – 10-pixel refinement template
constexpr auto compute_context_1 = [](ReadonlySpan<AdaptiveTemplatePixel>, BitBuffer const& reference, int reference_x, int reference_y, BitBuffer const& buffer, int x, int y) -> u16 {
u16 result = 0;
for (int dy = -1; dy <= 1; ++dy) {
for (int dx = -1; dx <= 1; ++dx) {
if ((dy == -1 && (dx == -1 || dx == 1)) || (dy == 1 && dx == -1))
continue;
result = (result << 1) | (u16)get_pixel(reference, reference_x + dx, reference_y + dy);
}
}
for (int i = 0; i < 3; ++i)
result = (result << 1) | (u16)get_pixel(buffer, x - 1 + i, y - 1);
result = (result << 1) | (u16)get_pixel(buffer, x - 1, y);
return result;
};
auto compute_context = inputs.gr_template == 0 ? compute_context_0 : compute_context_1;
// 6.3.5.6 Decoding the refinement bitmap
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
for (size_t y = 0; y < result->height(); ++y) {
for (size_t x = 0; x < result->width(); ++x) {
u16 context = compute_context(inputs.adaptive_template_pixels, *inputs.reference_bitmap, x - inputs.reference_x_offset, y - inputs.reference_y_offset, *result, x, y);
bool bit = decoder.get_next_bit(contexts[context]);
result->set_bit(x, y, bit);
}
}
return result;
}
// 6.4.2 Input parameters
// Table 9 – Parameters for the text region decoding procedure
struct TextRegionDecodingInputParameters {
bool uses_huffman_encoding { false }; // "SBHUFF" in spec.
bool uses_refinement_coding { false }; // "SBREFINE" in spec.
u32 region_width { 0 }; // "SBW" in spec.
u32 region_height { 0 }; // "SBH" in spec.
u32 number_of_instances { 0 }; // "SBNUMINSTANCES" in spec.
u32 size_of_symbol_instance_strips { 0 }; // "SBSTRIPS" in spec.
// "SBNUMSYMS" is `symbols.size()` below.
// FIXME: SBSYMCODES
u32 id_symbol_code_length { 0 }; // "SBSYMCODELEN" in spec.
Vector<NonnullRefPtr<Symbol>> symbols; // "SBNUMSYMS" / "SBSYMS" in spec.
u8 default_pixel { 0 }; // "SBDEFPIXEL" in spec.
CombinationOperator operator_ { CombinationOperator::Or }; // "SBCOMBOP" in spec.
bool is_transposed { false }; // "TRANSPOSED" in spec.
enum class Corner {
BottomLeft = 0,
TopLeft = 1,
BottomRight = 2,
TopRight = 3,
};
Corner reference_corner { Corner::TopLeft }; // "REFCORNER" in spec.
i8 delta_s_offset { 0 }; // "SBDSOFFSET" in spec.
// FIXME: SBHUFFFS, SBHUFFFDS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SBHUFFRDX, SBHUFFRDY, SBHUFFRSIZE
u8 refinement_template { 0 }; // "SBRTEMPLATE" in spec.
Array<AdaptiveTemplatePixel, 2> refinement_adaptive_template_pixels; // "SBRATX" / "SBRATY" in spec.
// FIXME: COLEXTFLAG, SBCOLS
};
// 6.4 Text Region Decoding Procedure
static ErrorOr<NonnullOwnPtr<BitBuffer>> text_region_decoding_procedure(TextRegionDecodingInputParameters const& inputs, ReadonlyBytes data)
{
if (inputs.uses_huffman_encoding)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet");
auto decoder = TRY(QMArithmeticDecoder::initialize(data));
// 6.4.6 Strip delta T
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDT and multiply the resulting value by SBSTRIPS.
// If SBHUFF is 0, decode a value using the IADT integer arithmetic decoding procedure (see Annex A) and multiply the resulting value by SBSTRIPS."
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder delta_t_integer_decoder(decoder);
auto read_delta_t = [&]() -> ErrorOr<i32> {
return TRY(delta_t_integer_decoder.decode_non_oob()) * inputs.size_of_symbol_instance_strips;
};
// 6.4.7 First symbol instance S coordinate
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFFS.
// If SBHUFF is 0, decode a value using the IAFS integer arithmetic decoding procedure (see Annex A)."
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder first_s_integer_decoder(decoder);
auto read_first_s = [&]() -> ErrorOr<i32> {
return first_s_integer_decoder.decode_non_oob();
};
// 6.4.8 Subsequent symbol instance S coordinate
// "If SBHUFF is 1, decode a value using the Huffman table specified by SBHUFFDS.
// If SBHUFF is 0, decode a value using the IADS integer arithmetic decoding procedure (see Annex A).
// In either case it is possible that the result of this decoding is the out-of-band value OOB.""
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder subsequent_s_integer_decoder(decoder);
auto read_subsequent_s = [&]() -> Optional<i32> {
return subsequent_s_integer_decoder.decode();
};
// 6.4.9 Symbol instance T coordinate
// "If SBSTRIPS == 1, then the value decoded is always zero. Otherwise:
// • If SBHUFF is 1, decode a value by reading ceil(log2(SBSTRIPS)) bits directly from the bitstream.
// • If SBHUFF is 0, decode a value using the IAIT integer arithmetic decoding procedure (see Annex A)."
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder instance_t_integer_decoder(decoder);
auto read_instance_t = [&]() -> ErrorOr<i32> {
if (inputs.size_of_symbol_instance_strips == 1)
return 0;
return instance_t_integer_decoder.decode_non_oob();
};
// 6.4.10 Symbol instance symbol ID
// "If SBHUFF is 1, decode a value by reading one bit at a time until the resulting bit string is equal to one of the entries in
// SBSYMCODES. The resulting value, which is IDI, is the index of the entry in SBSYMCODES that is read.
// If SBHUFF is 0, decode a value using the IAID integer arithmetic decoding procedure (see Annex A). Set IDI to the
// resulting value.""
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerIDDecoder id_decoder(decoder, inputs.id_symbol_code_length);
// 6.4.11.1 Symbol instance refinement delta width
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder refinement_delta_width_decoder(decoder);
auto read_refinement_delta_width = [&]() -> ErrorOr<i32> {
return refinement_delta_width_decoder.decode_non_oob();
};
// 6.4.11.2 Symbol instance refinement delta width
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder refinement_delta_height_decoder(decoder);
auto read_refinement_delta_height = [&]() -> ErrorOr<i32> {
return refinement_delta_height_decoder.decode_non_oob();
};
// 6.4.11.3 Symbol instance refinement X offset
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder refinement_x_offset_decoder(decoder);
auto read_refinement_x_offset = [&]() -> ErrorOr<i32> {
return refinement_x_offset_decoder.decode_non_oob();
};
// 6.4.11.4 Symbol instance refinement Y offset
// FIXME: Implement support for SBHUFF = 1.
JBIG2::ArithmeticIntegerDecoder refinement_y_offset_decoder(decoder);
auto read_refinement_y_offset = [&]() -> ErrorOr<i32> {
return refinement_y_offset_decoder.decode_non_oob();
};
// 6.4.11 Symbol instance bitmap
JBIG2::ArithmeticIntegerDecoder has_refinement_image_decoder(decoder);
Vector<QMArithmeticDecoder::Context> refinement_contexts;
if (inputs.uses_refinement_coding)
refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10));
OwnPtr<BitBuffer> refinement_result;
auto read_bitmap = [&](u32 id) -> ErrorOr<BitBuffer const*> {
if (id >= inputs.symbols.size())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol ID out of range");
auto const& symbol = inputs.symbols[id]->bitmap();
bool has_refinement_image = false; // "R_I" in spec.
if (inputs.uses_refinement_coding) {
// "• If SBHUFF is 1, then read one bit and set RI to the value of that bit.
// • If SBHUFF is 0, then decode one bit using the IARI integer arithmetic decoding procedure and set RI to the value of that bit."
// FIXME: Implement support for SBHUFF = 1.
has_refinement_image = TRY(has_refinement_image_decoder.decode_non_oob());
}
if (!has_refinement_image)
return &symbol;
auto refinement_delta_width = TRY(read_refinement_delta_width());
auto refinement_delta_height = TRY(read_refinement_delta_height());
auto refinement_x_offset = TRY(read_refinement_x_offset());
auto refinement_y_offset = TRY(read_refinement_y_offset());
// FIXME: This is missing some steps needed for the SBHUFF = 1 case.
dbgln_if(JBIG2_DEBUG, "refinement delta width: {}, refinement delta height: {}, refinement x offset: {}, refinement y offset: {}", refinement_delta_width, refinement_delta_height, refinement_x_offset, refinement_y_offset);
// Table 12 – Parameters used to decode a symbol instance's bitmap using refinement
if (symbol.width() > static_cast<u32>(INT32_MAX) || static_cast<i32>(symbol.width()) + refinement_delta_width < 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Refinement width out of bounds");
if (symbol.height() > static_cast<u32>(INT32_MAX) || static_cast<i32>(symbol.height()) + refinement_delta_height < 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Refinement height out of bounds");
GenericRefinementRegionDecodingInputParameters refinement_inputs;
refinement_inputs.region_width = symbol.width() + refinement_delta_width;
refinement_inputs.region_height = symbol.height() + refinement_delta_height;
refinement_inputs.gr_template = inputs.refinement_template;
refinement_inputs.reference_bitmap = &symbol;
refinement_inputs.reference_x_offset = floor_div(refinement_delta_width, 2) + refinement_x_offset;
refinement_inputs.reference_y_offset = floor_div(refinement_delta_height, 2) + refinement_y_offset;
refinement_inputs.is_typical_prediction_used = false;
refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels;
refinement_result = TRY(generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts));
return refinement_result.ptr();
};
// 6.4.5 Decoding the text region
// "1) Fill a bitmap SBREG, of the size given by SBW and SBH, with the SBDEFPIXEL value."
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
if (inputs.default_pixel != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot handle SBDEFPIXEL not equal to 0 yet");
result->fill(inputs.default_pixel != 0);
// "2) Decode the initial STRIPT value as described in 6.4.6. Negate the decoded value and assign this negated value to the variable STRIPT.
// Assign the value 0 to FIRSTS. Assign the value 0 to NINSTANCES."
i32 strip_t = -TRY(read_delta_t());
i32 first_s = 0;
u32 n_instances = 0;
// "3) If COLEXTFLAG is 1, decode the colour section as described in 6.4.12."
// FIXME: Implement support for colors one day.
// "4) Decode each strip as follows:
// a) If NINSTANCES is equal to SBNUMINSTANCES then there are no more strips to decode,
// and the process of decoding the text region is complete; proceed to step 4)."
// Implementor's note. The spec means "proceed to step 5)" at the end of 4a).
while (n_instances < inputs.number_of_instances) {
// "b) Decode the strip's delta T value as described in 6.4.6. Let DT be the decoded value. Set:
// STRIPT = STRIPT + DT"
i32 delta_t = TRY(read_delta_t());
strip_t += delta_t;
i32 cur_s;
bool is_first_symbol = true;
while (true) {
// "c) Decode each symbol instance in the strip as follows:
// i) If the current symbol instance is the first symbol instance in the strip, then decode the first
// symbol instance's S coordinate as described in 6.4.7. Let DFS be the decoded value. Set:
// FIRSTS = FIRSTS + DFS
// CURS = FIRSTS
// ii) Otherwise, if the current symbol instance is not the first symbol instance in the strip, decode
// the symbol instance's S coordinate as described in 6.4.8. If the result of this decoding is OOB
// then the last symbol instance of the strip has been decoded; proceed to step 3 d). Otherwise, let
// IDS be the decoded value. Set:
// CURS = CURS + IDS + SBDSOFFSET"
// Implementor's note: The spec means "proceed to step 4 d)" in 4c ii).
if (is_first_symbol) {
i32 delta_first_s = TRY(read_first_s());
first_s += delta_first_s;
cur_s = first_s;
is_first_symbol = false;
} else {
auto subsequent_s = read_subsequent_s();
if (!subsequent_s.has_value())
break;
i32 instance_delta_s = subsequent_s.value();
cur_s += instance_delta_s + inputs.delta_s_offset;
}
// "iii) Decode the symbol instance's T coordinate as described in 6.4.9. Let CURT be the decoded value. Set:
// TI = STRIPT + CURT"
i32 cur_t = TRY(read_instance_t());
i32 t_instance = strip_t + cur_t;
// "iv) Decode the symbol instance's symbol ID as described in 6.4.10. Let IDI be the decoded value."
u32 id = id_decoder.decode();
// "v) Determine the symbol instance's bitmap IBI as described in 6.4.11. The width and height of this
// bitmap shall be denoted as WI and HI respectively."
auto const& symbol = *TRY(read_bitmap(id));
// "vi) Update CURS as follows:
// • If TRANSPOSED is 0, and REFCORNER is TOPRIGHT or BOTTOMRIGHT, set:
// CURS = CURS + WI – 1
// • If TRANSPOSED is 1, and REFCORNER is BOTTOMLEFT or BOTTOMRIGHT, set:
// CURS = CURS + HI – 1
// • Otherwise, do not change CURS in this step."
using enum TextRegionDecodingInputParameters::Corner;
if (!inputs.is_transposed && (inputs.reference_corner == TopRight || inputs.reference_corner == BottomRight))
cur_s += symbol.width() - 1;
if (inputs.is_transposed && (inputs.reference_corner == BottomLeft || inputs.reference_corner == BottomRight))
cur_s += symbol.height() - 1;
// "vii) Set:
// SI = CURS"
auto s_instance = cur_s;
// "viii) Determine the location of the symbol instance bitmap with respect to SBREG as follows:
// • If TRANSPOSED is 0, then:
// – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap
// IBI shall be placed at SBREG[SI, TI].
// – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance
// bitmap IBI shall be placed at SBREG[SI, TI].
// – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol
// instance bitmap IBI shall be placed at SBREG[SI, TI].
// – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol
// instance bitmap IBI shall be placed at SBREG[SI, TI].
// • If TRANSPOSED is 1, then:
// – If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitmap
// IBI shall be placed at SBREG[TI, SI].
// – If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance
// bitmap IBI shall be placed at SBREG[TI, SI].
// – If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol
// instance bitmap IBI shall be placed at SBREG[TI, SI].
// – If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol
// instance bitmap IBI shall be placed at SBREG[TI, SI].
// If any part of IBI, when placed at this location, lies outside the bounds of SBREG, then ignore
// this part of IBI in step 3 c) ix)."
// Implementor's note: The spec means "ignore this part of IBI in step 3 c) x)" in 3c viii)'s last sentence.
if (inputs.is_transposed)
swap(s_instance, t_instance);
if (inputs.reference_corner == TopRight || inputs.reference_corner == BottomRight)
s_instance -= symbol.width() - 1;
if (inputs.reference_corner == BottomLeft || inputs.reference_corner == BottomRight)
t_instance -= symbol.height() - 1;
// "ix) If COLEXTFLAG is 1, set the colour specified by SBCOLS[SBFGCOLID[NINSTANCES]]
// to the foreground colour of the symbol instance bitmap IBI."
// FIXME: Implement support for colors one day.
// "x) Draw IBI into SBREG. Combine each pixel of IBI with the current value of the corresponding
// pixel in SBREG, using the combination operator specified by SBCOMBOP. Write the results
// of each combination into that pixel in SBREG."
dbgln_if(JBIG2_DEBUG, "combining symbol {} ({}x{}) at ({}, {}) with operator {}", id, symbol.width(), symbol.height(), s_instance, t_instance, (int)inputs.operator_);
composite_bitbuffer(*result, symbol, { s_instance, t_instance }, inputs.operator_);
// "xi) Update CURS as follows:
// • If TRANSPOSED is 0, and REFCORNER is TOPLEFT or BOTTOMLEFT, set:
// CURS = CURS + WI – 1
// • If TRANSPOSED is 1, and REFCORNER is TOPLEFT or TOPRIGHT, set:
// CURS = CURS + HI – 1
// • Otherwise, do not change CURS in this step."
if (!inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == BottomLeft))
cur_s += symbol.width() - 1;
if (inputs.is_transposed && (inputs.reference_corner == TopLeft || inputs.reference_corner == TopRight))
cur_s += symbol.height() - 1;
// "xii) Set:
// NINSTANCES = NINSTANCES + 1"
++n_instances;
}
// "d) When the strip has been completely decoded, decode the next strip."
// (Done in the next loop iteration.)
}
// "5) After all the strips have been decoded, the current contents of SBREG are the results that shall be
// obtained by every decoder, whether it performs this exact sequence of steps or not."
return result;
}
// 6.5.2 Input parameters
// Table 13 – Parameters for the symbol dictionary decoding procedure
struct SymbolDictionaryDecodingInputParameters {
bool uses_huffman_encoding { false }; // "SDHUFF" in spec.
bool uses_refinement_or_aggregate_coding { false }; // "SDREFAGG" in spec.
Vector<NonnullRefPtr<Symbol>> input_symbols; // "SDNUMINSYMS", "SDINSYMS" in spec.
u32 number_of_new_symbols { 0 }; // "SDNUMNEWSYMS" in spec.
u32 number_of_exported_symbols { 0 }; // "SDNUMEXSYMS" in spec.
// FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST
u8 symbol_template { 0 }; // "SDTEMPLATE" in spec.
Array<AdaptiveTemplatePixel, 4> adaptive_template_pixels; // "SDATX" / "SDATY" in spec.
u8 refinement_template { 0 }; // "SDRTEMPLATE" in spec;
Array<AdaptiveTemplatePixel, 2> refinement_adaptive_template_pixels; // "SDRATX" / "SDRATY" in spec.
};
// 6.5 Symbol Dictionary Decoding Procedure
static ErrorOr<Vector<NonnullRefPtr<Symbol>>> symbol_dictionary_decoding_procedure(SymbolDictionaryDecodingInputParameters const& inputs, ReadonlyBytes data)
{
if (inputs.uses_huffman_encoding)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman symbol dictionaries yet");
auto decoder = TRY(QMArithmeticDecoder::initialize(data));
Vector<QMArithmeticDecoder::Context> contexts;
contexts.resize(1 << number_of_context_bits_for_template(inputs.symbol_template));
// 6.5.6 Height class delta height
// "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDH.
// If SDHUFF is 0, decode a value using the IADH integer arithmetic decoding procedure (see Annex A)."
// FIXME: Implement support for SDHUFF = 1.
JBIG2::ArithmeticIntegerDecoder delta_height_integer_decoder(decoder);
auto read_delta_height = [&]() -> ErrorOr<i32> {
return delta_height_integer_decoder.decode_non_oob();
};
// 6.5.7 Delta width
// "If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFDW.
// If SDHUFF is 0, decode a value using the IADW integer arithmetic decoding procedure (see Annex A).
// In either case it is possible that the result of this decoding is the out-of-band value OOB."
// FIXME: Implement support for SDHUFF = 1.
JBIG2::ArithmeticIntegerDecoder delta_width_integer_decoder(decoder);
auto read_delta_width = [&]() -> Optional<i32> {
return delta_width_integer_decoder.decode();
};
// 6.5.8 Symbol bitmap
// "This field is only present if SDHUFF = 0 or SDREFAGG = 1. This field takes one of two forms; SDREFAGG
// determines which form is used."
// 6.5.8.2.1 Number of symbol instances in aggregation
// If SDHUFF is 1, decode a value using the Huffman table specified by SDHUFFAGGINST.
// If SDHUFF is 0, decode a value using the IAAI integer arithmetic decoding procedure (see Annex A).
// FIXME: Implement support for SDHUFF = 1.
Optional<JBIG2::ArithmeticIntegerDecoder> number_of_symbol_instances_decoder;
auto read_number_of_symbol_instances = [&]() -> ErrorOr<i32> {
if (!number_of_symbol_instances_decoder.has_value())
number_of_symbol_instances_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
return number_of_symbol_instances_decoder->decode_non_oob();
};
// 6.5.8.1 Direct-coded symbol bitmap
Optional<JBIG2::ArithmeticIntegerIDDecoder> id_decoder;
Optional<JBIG2::ArithmeticIntegerDecoder> refinement_x_offset_decoder;
Optional<JBIG2::ArithmeticIntegerDecoder> refinement_y_offset_decoder;
// FIXME: When we implement REFAGGNINST > 1 support, do these need to be shared with
// text_region_decoding_procedure() then?
Vector<QMArithmeticDecoder::Context> refinement_contexts;
// This belongs in 6.5.5 1) below, but also needs to be captured by read_bitmap here.
Vector<NonnullRefPtr<Symbol>> new_symbols;
auto read_symbol_bitmap = [&](u32 width, u32 height) -> ErrorOr<NonnullOwnPtr<BitBuffer>> {
// "If SDREFAGG is 0, then decode the symbol's bitmap using a generic region decoding procedure as described in 6.2.
// Set the parameters to this decoding procedure as shown in Table 16."
if (!inputs.uses_refinement_or_aggregate_coding) {
// Table 16 – Parameters used to decode a symbol's bitmap using generic bitmap decoding
GenericRegionDecodingInputParameters generic_inputs;
generic_inputs.is_modified_modified_read = false;
generic_inputs.region_width = width;
generic_inputs.region_height = height;
generic_inputs.gb_template = inputs.symbol_template;
generic_inputs.is_extended_reference_template_used = false; // Missing from spec in table 16.
for (int i = 0; i < 4; ++i)
generic_inputs.adaptive_template_pixels[i] = inputs.adaptive_template_pixels[i];
generic_inputs.arithmetic_decoder = &decoder;
return generic_region_decoding_procedure(generic_inputs, {}, contexts);
}
// 6.5.8.2 Refinement/aggregate-coded symbol bitmap
// "1) Decode the number of symbol instances contained in the aggregation, as specified in 6.5.8.2.1. Let REFAGGNINST be the value decoded."
auto number_of_symbol_instances = TRY(read_number_of_symbol_instances()); // "REFAGGNINST" in spec.
dbgln_if(JBIG2_DEBUG, "Number of symbol instances: {}", number_of_symbol_instances);
if (number_of_symbol_instances > 1) {
// "2) If REFAGGNINST is greater than one, then decode the bitmap itself using a text region decoding procedure
// as described in 6.4. Set the parameters to this decoding procedure as shown in Table 17."
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode symbol bitmaps with more than one symbol instance yet");
}
// "3) If REFAGGNINST is equal to one, then decode the bitmap as described in 6.5.8.2.2."
// 6.5.8.2.3 Setting SBSYMCODES and SBSYMCODELEN
// FIXME: Implement support for SDHUFF = 1
u32 code_length = ceil(log2(inputs.input_symbols.size() + inputs.number_of_new_symbols));
// 6.5.8.2.2 Decoding a bitmap when REFAGGNINST = 1
// FIXME: This is missing some steps for the SDHUFF = 1 case.
if (number_of_symbol_instances != 1)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of symbol instances");
if (!id_decoder.has_value())
id_decoder = JBIG2::ArithmeticIntegerIDDecoder(decoder, code_length);
u32 symbol_id = id_decoder->decode();
if (!refinement_x_offset_decoder.has_value())
refinement_x_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
i32 refinement_x_offset = TRY(refinement_x_offset_decoder->decode_non_oob());
if (!refinement_y_offset_decoder.has_value())
refinement_y_offset_decoder = JBIG2::ArithmeticIntegerDecoder(decoder);
i32 refinement_y_offset = TRY(refinement_y_offset_decoder->decode_non_oob());
if (symbol_id >= inputs.input_symbols.size() && symbol_id - inputs.input_symbols.size() >= new_symbols.size())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Refinement/aggregate symbol ID out of range");
auto IBO = (symbol_id < inputs.input_symbols.size()) ? inputs.input_symbols[symbol_id] : new_symbols[symbol_id - inputs.input_symbols.size()];
// Table 18 – Parameters used to decode a symbol's bitmap when REFAGGNINST = 1
GenericRefinementRegionDecodingInputParameters refinement_inputs;
refinement_inputs.region_width = width;
refinement_inputs.region_height = height;
refinement_inputs.gr_template = inputs.refinement_template;
refinement_inputs.reference_bitmap = &IBO->bitmap();
refinement_inputs.reference_x_offset = refinement_x_offset;
refinement_inputs.reference_y_offset = refinement_y_offset;
refinement_inputs.is_typical_prediction_used = false;
refinement_inputs.adaptive_template_pixels = inputs.refinement_adaptive_template_pixels;
if (refinement_contexts.is_empty())
refinement_contexts.resize(1 << (inputs.refinement_template == 0 ? 13 : 10));
return generic_refinement_region_decoding_procedure(refinement_inputs, decoder, refinement_contexts);
};
// 6.5.5 Decoding the symbol dictionary
// "1) Create an array SDNEWSYMS of bitmaps, having SDNUMNEWSYMS entries."
// Done above read_symbol_bitmap's definition.
// "2) If SDHUFF is 1 and SDREFAGG is 0, create an array SDNEWSYMWIDTHS of integers, having SDNUMNEWSYMS entries."
// FIXME: Implement support for SDHUFF = 1.
// "3) Set:
// HCHEIGHT = 0
// NSYMSDECODED = 0"
u32 height_class_height = 0;
u32 number_of_symbols_decoded = 0;
// "4) Decode each height class as follows:
// a) If NSYMSDECODED == SDNUMNEWSYMS then all the symbols in the dictionary have been decoded; proceed to step 5)."
while (number_of_symbols_decoded < inputs.number_of_new_symbols) {
// "b) Decode the height class delta height as described in 6.5.6. Let HCDH be the decoded value. Set:
// HCHEIGHT = HCEIGHT + HCDH
// SYMWIDTH = 0
// TOTWIDTH = 0
// HCFIRSTSYM = NSYMSDECODED"
i32 delta_height = TRY(read_delta_height());
height_class_height += delta_height;
u32 symbol_width = 0;
u32 total_width = 0;
u32 height_class_first_symbol = number_of_symbols_decoded;
// "c) Decode each symbol within the height class as follows:"
while (true) {
// "i) Decode the delta width for the symbol as described in 6.5.7."
auto opt_delta_width = read_delta_width();
// " If the result of this decoding is OOB then all the symbols in this height class have been decoded; proceed to step 4 d)."
if (!opt_delta_width.has_value())
break;
VERIFY(number_of_symbols_decoded < inputs.number_of_new_symbols);
// " Otherwise let DW be the decoded value and set:"
// SYMWIDTH = SYMWIDTH + DW
// TOTWIDTH = TOTWIDTH + SYMWIDTH"
i32 delta_width = opt_delta_width.value();
symbol_width += delta_width;
total_width += symbol_width;
// "ii) If SDHUFF is 0 or SDREFAGG is 1, then decode the symbol's bitmap as described in 6.5.8.
// Let BS be the decoded bitmap (this bitmap has width SYMWIDTH and height HCHEIGHT). Set:
// SDNEWSYMS[NSYMSDECODED] = BS"
// FIXME: Implement support for SDHUFF = 1.
// FIXME: Doing this eagerly is pretty wasteful. Decode on demand instead?
auto bitmap = TRY(read_symbol_bitmap(symbol_width, height_class_height));
new_symbols.append(Symbol::create(move(bitmap)));
// "iii) If SDHUFF is 1 and SDREFAGG is 0, then set:
// SDNEWSYMWIDTHS[NSYMSDECODED] = SYMWIDTH"
// FIXME: Implement support for SDHUFF = 1.
(void)total_width;
(void)height_class_first_symbol;
// "iv) Set:
// NSYMSDECODED = NSYMSDECODED + 1"
number_of_symbols_decoded++;
}
// "d) If SDHUFF is 1 and SDREFAGG is 0, [...long text elided...]"
// FIXME: Implement support for SDHUFF = 1.
}
// "5) Determine which symbol bitmaps are exported from this symbol dictionary, as described in 6.5.10. These
// bitmaps can be drawn from the symbols that are used as input to the symbol dictionary decoding
// procedure as well as the new symbols produced by the decoding procedure."
JBIG2::ArithmeticIntegerDecoder export_integer_decoder(decoder);
// 6.5.10 Exported symbols
Vector<bool> export_flags;
export_flags.resize(inputs.input_symbols.size() + inputs.number_of_new_symbols);
// "1) Set:
// EXINDEX = 0
// CUREXFLAG = 0"
u32 exported_index = 0;
bool current_export_flag = false;
do {
// "2) Decode a value using Table B.1 if SDHUFF is 1, or the IAEX integer arithmetic decoding procedure if
// SDHUFF is 0. Let EXRUNLENGTH be the decoded value."
// FIXME: Implement support for SDHUFF = 1.
i32 export_run_length = TRY(export_integer_decoder.decode_non_oob());
// "3) Set EXFLAGS[EXINDEX] through EXFLAGS[EXINDEX + EXRUNLENGTH – 1] to CUREXFLAG.
// If EXRUNLENGTH = 0, then this step does not change any values."
for (int i = 0; i < export_run_length; ++i)
export_flags[exported_index + i] = current_export_flag;
// "4) Set:
// EXINDEX = EXINDEX + EXRUNLENGTH
// CUREXFLAG = NOT(CUREXFLAG)"
exported_index += export_run_length;
current_export_flag = !current_export_flag;
// 5) Repeat steps 2) through 4) until EXINDEX == SDNUMINSYMS + SDNUMNEWSYMS.
} while (exported_index < inputs.input_symbols.size() + inputs.number_of_new_symbols);
// "6) The array EXFLAGS now contains 1 for each symbol that is exported from the dictionary, and 0 for each
// symbol that is not exported."
Vector<NonnullRefPtr<Symbol>> exported_symbols;
// "7) Set:
// I = 0
// J = 0
// 8) For each value of I from 0 to SDNUMINSYMS + SDNUMNEWSYMS – 1,"
for (size_t i = 0; i < inputs.input_symbols.size() + inputs.number_of_new_symbols; ++i) {
// "if EXFLAGS[I] == 1 then perform the following steps:"
if (!export_flags[i])
continue;
// "a) If I < SDNUMINSYMS then set:
// SDEXSYMS[J] = SDINSYMS[I]
// J = J + 1"
if (i < inputs.input_symbols.size())
exported_symbols.append(inputs.input_symbols[i]);
// "b) If I >= SDNUMINSYMS then set:
// SDEXSYMS[J] = SDNEWSYMS[I – SDNUMINSYMS]
// J = J + 1"
if (i >= inputs.input_symbols.size())
exported_symbols.append(move(new_symbols[i - inputs.input_symbols.size()]));
}
if (exported_symbols.size() != inputs.number_of_exported_symbols)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unexpected number of exported symbols");
return exported_symbols;
}
// Annex C Gray-scale image decoding procedure
// C.2 Input parameters
// Table C.1 – Parameters for the gray-scale image decoding procedure
struct GrayscaleInputParameters {
bool uses_mmr { false }; // "GSMMR" in spec.
Optional<BitBuffer const&> skip_pattern; // "GSUSESKIP" / "GSKIP" in spec.
u8 bpp { 0 }; // "GSBPP" in spec.
u32 width { 0 }; // "GSW" in spec.
u32 height { 0 }; // "GSH" in spec.
u8 template_id { 0 }; // "GSTEMPLATE" in spec.
// If uses_mmr is false, grayscale_image_decoding_procedure() reads data off this decoder.
QMArithmeticDecoder* arithmetic_decoder { nullptr };
};
static ErrorOr<Vector<u8>> grayscale_image_decoding_procedure(GrayscaleInputParameters const& inputs, ReadonlyBytes data, Vector<QMArithmeticDecoder::Context>& contexts)
{
// FIXME: Support this. generic_region_decoding_procedure() currently doesn't tell us how much data it
// reads for MMR bitmaps, so we can't currently read more than one MMR bitplane here.
if (inputs.uses_mmr)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode MMR grayscale images yet");
// Table C.4 – Parameters used to decode a bitplane of the gray-scale image
GenericRegionDecodingInputParameters generic_inputs;
generic_inputs.is_modified_modified_read = inputs.uses_mmr;
generic_inputs.region_width = inputs.width;
generic_inputs.region_height = inputs.height;
generic_inputs.gb_template = inputs.template_id;
generic_inputs.is_typical_prediction_used = false;
generic_inputs.is_extended_reference_template_used = false; // Missing from spec.
generic_inputs.skip_pattern = inputs.skip_pattern;
generic_inputs.adaptive_template_pixels[0].x = inputs.template_id <= 1 ? 3 : 2;
generic_inputs.adaptive_template_pixels[0].y = -1;
generic_inputs.adaptive_template_pixels[1].x = -3;
generic_inputs.adaptive_template_pixels[1].y = -1;
generic_inputs.adaptive_template_pixels[2].x = 2;
generic_inputs.adaptive_template_pixels[2].y = -2;
generic_inputs.adaptive_template_pixels[3].x = -2;
generic_inputs.adaptive_template_pixels[3].y = -2;
generic_inputs.arithmetic_decoder = inputs.arithmetic_decoder;
// C.5 Decoding the gray-scale image
// "The gray-scale image is obtained by decoding GSBPP bitplanes. These bitplanes are denoted (from least significant to
// most significant) GSPLANES[0], GSPLANES[1], . . . , GSPLANES[GSBPP – 1]. The bitplanes are Gray-coded, so
// that each bitplane's true value is equal to its coded value XORed with the next-more-significant bitplane."
Vector<OwnPtr<BitBuffer>> bitplanes;
bitplanes.resize(inputs.bpp);
// "1) Decode GSPLANES[GSBPP – 1] using the generic region decoding procedure. The parameters to the
// generic region decoding procedure are as shown in Table C.4."
bitplanes[inputs.bpp - 1] = TRY(generic_region_decoding_procedure(generic_inputs, data, contexts));
// "2) Set J = GSBPP – 2."
int j = inputs.bpp - 2;
// "3) While J >= 0, perform the following steps:"
while (j >= 0) {
// "a) Decode GSPLANES[J] using the generic region decoding procedure. The parameters to the generic
// region decoding procedure are as shown in Table C.4."
bitplanes[j] = TRY(generic_region_decoding_procedure(generic_inputs, data, contexts));
// "b) For each pixel (x, y) in GSPLANES[J], set:
// GSPLANES[J][x, y] = GSPLANES[J + 1][x, y] XOR GSPLANES[J][x, y]"
for (u32 y = 0; y < inputs.height; ++y) {
for (u32 x = 0; x < inputs.width; ++x) {
bool bit = bitplanes[j + 1]->get_bit(x, y) ^ bitplanes[j]->get_bit(x, y);
bitplanes[j]->set_bit(x, y, bit);
}
}
// "c) Set J = J – 1."
j = j - 1;
}
// "4) For each (x, y), set:
// GSVALS [x, y] = sum_{J = 0}^{GSBPP - 1} GSPLANES[J][x,y] × 2**J)"
Vector<u8> result;
result.resize(inputs.width * inputs.height);
for (u32 y = 0; y < inputs.height; ++y) {
for (u32 x = 0; x < inputs.width; ++x) {
u8 value = 0;
for (int j = 0; j < inputs.bpp; ++j) {
if (bitplanes[j]->get_bit(x, y))
value |= 1 << j;
}
result[y * inputs.width + x] = value;
}
}
return result;
}
// 6.6.2 Input parameters
// Table 20 – Parameters for the halftone region decoding procedure
struct HalftoneRegionDecodingInputParameters {
u32 region_width { 0 }; // "HBW" in spec.
u32 region_height { 0 }; // "HBH" in spec.
bool uses_mmr { false }; // "HMMR" in spec.
u8 halftone_template { 0 }; // "HTEMPLATE" in spec.
Vector<NonnullRefPtr<Symbol>> patterns; // "HNUMPATS" / "HPATS" in spec.
bool default_pixel_value { false }; // "HDEFPIXEL" in spec.
CombinationOperator combination_operator { CombinationOperator::Or }; // "HCOMBOP" in spec.
bool enable_skip { false }; // "HENABLESKIP" in spec.
u32 grayscale_width { 0 }; // "HGW" in spec.
u32 grayscale_height { 0 }; // "HGH" in spec.
i32 grid_origin_x_offset { 0 }; // "HGX" in spec.
i32 grid_origin_y_offset { 0 }; // "HGY" in spec.
u16 grid_vector_x { 0 }; // "HRY" in spec.
u16 grid_vector_y { 0 }; // "HRX" in spec.
u8 pattern_width { 0 }; // "HPW" in spec.
u8 pattern_height { 0 }; // "HPH" in spec.
};
// 6.6 Halftone Region Decoding Procedure
static ErrorOr<NonnullOwnPtr<BitBuffer>> halftone_region_decoding_procedure(HalftoneRegionDecodingInputParameters const& inputs, ReadonlyBytes data, Vector<QMArithmeticDecoder::Context>& contexts)
{
// 6.6.5 Decoding the halftone region
// "1) Fill a bitmap HTREG, of the size given by HBW and HBH, with the HDEFPIXEL value."
auto result = TRY(BitBuffer::create(inputs.region_width, inputs.region_height));
result->fill(inputs.default_pixel_value);
// "2) If HENABLESKIP equals 1, compute a bitmap HSKIP as shown in 6.6.5.1."
Optional<BitBuffer const&> skip_pattern;
OwnPtr<BitBuffer> skip_pattern_storage;
if (inputs.enable_skip) {
// FIXME: This is untested; I haven't found a sample that uses HENABLESKIP yet.
// But generic_region_decoding_procedure() currently doesn't implement skip_pattern anyways
// and errors out on it, so we'll notice when this gets hit.
skip_pattern_storage = TRY(BitBuffer::create(inputs.pattern_width, inputs.pattern_height));
skip_pattern = *skip_pattern_storage;
// 6.6.5.1 Computing HSKIP
// "1) For each value of mg between 0 and HGH – 1, beginning from 0, perform the following steps:"
for (int m_g = 0; m_g < (int)inputs.grayscale_height; ++m_g) {
// "a) For each value of ng between 0 and HGW – 1, beginning from 0, perform the following steps:"
for (int n_g = 0; n_g < (int)inputs.grayscale_width; ++n_g) {
// "i) Set:
// x = (HGX + m_g × HRY + n_g × HRX) >> 8
// y = (HGY + m_g × HRX – n_g × HRY) >> 8"
auto x = (inputs.grid_origin_x_offset + m_g * inputs.grid_vector_y + n_g * inputs.grid_vector_x) >> 8;
auto y = (inputs.grid_origin_y_offset + m_g * inputs.grid_vector_x - n_g * inputs.grid_vector_y) >> 8;
// "ii) If ((x + HPW <= 0) OR (x >= HBW) OR (y + HPH <= 0) OR (y >= HBH)) then set:
// HSKIP[n_g, m_g] = 1
// Otherwise, set:
// HSKIP[n_g, m_g] = 0"
if (x + inputs.pattern_width <= 0 || x >= (int)inputs.region_width || y + inputs.pattern_height <= 0 || y >= (int)inputs.region_height)
skip_pattern_storage->set_bit(n_g, m_g, true);
else
skip_pattern_storage->set_bit(n_g, m_g, false);
}
}
}
// "3) Set HBPP to ⌈log2 (HNUMPATS)⌉."
u8 bits_per_pattern = ceil(log2(inputs.patterns.size()));
// "4) Decode an image GI of size HGW by HGH with HBPP bits per pixel using the gray-scale image decoding
// procedure as described in Annex C. Set the parameters to this decoding procedure as shown in Table 23.
// Let GI be the results of invoking this decoding procedure."
GrayscaleInputParameters grayscale_inputs;
grayscale_inputs.uses_mmr = inputs.uses_mmr;
grayscale_inputs.width = inputs.grayscale_width;
grayscale_inputs.height = inputs.grayscale_height;
grayscale_inputs.bpp = bits_per_pattern;
grayscale_inputs.skip_pattern = skip_pattern;
grayscale_inputs.template_id = inputs.halftone_template;
Optional<QMArithmeticDecoder> decoder;
if (!inputs.uses_mmr) {
decoder = TRY(QMArithmeticDecoder::initialize(data));
grayscale_inputs.arithmetic_decoder = &decoder.value();
}
auto grayscale_image = TRY(grayscale_image_decoding_procedure(grayscale_inputs, data, contexts));
// "5) Place sequentially the patterns corresponding to the values in GI into HTREG by the procedure described in 6.6.5.2.
// The rendering procedure is illustrated in Figure 26. The outline of two patterns are marked by dotted boxes."
{
// 6.6.5.2 Rendering the patterns
// "Draw the patterns into HTREG using the following procedure:
// 1) For each value of m_g between 0 and HGH – 1, beginning from 0, perform the following steps."
for (int m_g = 0; m_g < (int)inputs.grayscale_height; ++m_g) {
// "a) For each value of n_g between 0 and HGW – 1, beginning from 0, perform the following steps."
for (int n_g = 0; n_g < (int)inputs.grayscale_width; ++n_g) {
// "i) Set:
// x = (HGX + m_g × HRY + n_g × HRX) >> 8
// y = (HGY + m_g × HRX – n_g × HRY) >> 8"
auto x = (inputs.grid_origin_x_offset + m_g * inputs.grid_vector_y + n_g * inputs.grid_vector_x) >> 8;
auto y = (inputs.grid_origin_y_offset + m_g * inputs.grid_vector_x - n_g * inputs.grid_vector_y) >> 8;
// "ii) Draw the pattern HPATS[GI[n_g, m_g]] into HTREG such that its upper left pixel is at location (x, y) in HTREG.
//
// A pattern is drawn into HTREG as follows. Each pixel of the pattern shall be combined with
// the current value of the corresponding pixel in the halftone-coded bitmap, using the
// combination operator specified by HCOMBOP. The results of each combination shall be
// written into that pixel in the halftone-coded bitmap.
//
// If any part of a decoded pattern, when placed at location (x, y) lies outside the actual halftone-
// coded bitmap, then this part of the pattern shall be ignored in the process of combining the
// pattern with the bitmap."
u8 grayscale_value = grayscale_image[n_g + m_g * inputs.grayscale_width];
if (grayscale_value >= inputs.patterns.size())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Grayscale value out of range");
auto const& pattern = inputs.patterns[grayscale_value];
composite_bitbuffer(*result, pattern->bitmap(), { x, y }, inputs.combination_operator);
}
}
}
// "6) After all the patterns have been placed on the bitmap, the current contents of the halftone-coded bitmap are
// the results that shall be obtained by every decoder, whether it performs this exact sequence of steps or not."
return result;
}
// 6.7.2 Input parameters
// Table 24 – Parameters for the pattern dictionary decoding procedure
struct PatternDictionaryDecodingInputParameters {
bool uses_mmr { false }; // "HDMMR" in spec.
u32 width { 0 }; // "HDPW" in spec.
u32 height { 0 }; // "HDPH" in spec.
u32 gray_max { 0 }; // "GRAYMAX" in spec.
u8 hd_template { 0 }; // "HDTEMPLATE" in spec.
};
// 6.7 Pattern Dictionary Decoding Procedure
static ErrorOr<Vector<NonnullRefPtr<Symbol>>> pattern_dictionary_decoding_procedure(PatternDictionaryDecodingInputParameters const& inputs, ReadonlyBytes data, Vector<QMArithmeticDecoder::Context>& contexts)
{
// Table 27 – Parameters used to decode a pattern dictionary's collective bitmap
GenericRegionDecodingInputParameters generic_inputs;
generic_inputs.is_modified_modified_read = inputs.uses_mmr;
generic_inputs.region_width = (inputs.gray_max + 1) * inputs.width;
generic_inputs.region_height = inputs.height;
generic_inputs.gb_template = inputs.hd_template;
generic_inputs.is_typical_prediction_used = false;
generic_inputs.is_extended_reference_template_used = false; // Missing from spec in table 27.
generic_inputs.skip_pattern = OptionalNone {};
generic_inputs.adaptive_template_pixels[0].x = -inputs.width;
generic_inputs.adaptive_template_pixels[0].y = 0;
generic_inputs.adaptive_template_pixels[1].x = -3;
generic_inputs.adaptive_template_pixels[1].y = -1;
generic_inputs.adaptive_template_pixels[2].x = 2;
generic_inputs.adaptive_template_pixels[2].y = -2;
generic_inputs.adaptive_template_pixels[3].x = -2;
generic_inputs.adaptive_template_pixels[3].y = -2;
Optional<QMArithmeticDecoder> decoder;
if (!inputs.uses_mmr) {
decoder = TRY(QMArithmeticDecoder::initialize(data));
generic_inputs.arithmetic_decoder = &decoder.value();
}
auto bitmap = TRY(generic_region_decoding_procedure(generic_inputs, data, contexts));
Vector<NonnullRefPtr<Symbol>> patterns;
for (u32 gray = 0; gray <= inputs.gray_max; ++gray) {
int x = gray * inputs.width;
auto pattern = TRY(bitmap->subbitmap({ x, 0, static_cast<int>(inputs.width), static_cast<int>(inputs.height) }));
patterns.append(Symbol::create(move(pattern)));
}
dbgln_if(JBIG2_DEBUG, "Pattern dictionary: {} patterns", patterns.size());
return patterns;
}
static ErrorOr<void> decode_symbol_dictionary(JBIG2LoadingContext& context, SegmentData& segment)
{
// 7.4.2 Symbol dictionary segment syntax
// 7.4.2.1 Symbol dictionary segment data header
FixedMemoryStream stream(segment.data);
// 7.4.2.1.1 Symbol dictionary flags
u16 flags = TRY(stream.read_value<BigEndian<u16>>());
bool uses_huffman_encoding = (flags & 1) != 0; // "SDHUFF" in spec.
bool uses_refinement_or_aggregate_coding = (flags & 2) != 0; // "SDREFAGG" in spec.
u8 huffman_table_selection_for_height_differences = (flags >> 2) & 0b11; // "SDHUFFDH" in spec.
if (huffman_table_selection_for_height_differences == 2)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences");
if (!uses_huffman_encoding && huffman_table_selection_for_height_differences != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_height_differences");
u8 huffman_table_selection_for_width_differences = (flags >> 4) & 0b11; // "SDHUFFDW" in spec.
if (huffman_table_selection_for_width_differences == 2)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences");
if (!uses_huffman_encoding && huffman_table_selection_for_width_differences != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid huffman_table_selection_for_width_differences");
bool uses_user_supplied_size_table = (flags >> 6) & 1; // "SDHUFFBMSIZE" in spec.
if (!uses_huffman_encoding && uses_user_supplied_size_table)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_size_table");
bool uses_user_supplied_aggregate_table = (flags >> 7) & 1; // "SDHUFFAGGINST" in spec.
if (!uses_huffman_encoding && uses_user_supplied_aggregate_table)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid uses_user_supplied_aggregate_table");
bool bitmap_coding_context_used = (flags >> 8) & 1;
if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_used)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_used");
bool bitmap_coding_context_retained = (flags >> 9) & 1;
if (uses_huffman_encoding && !uses_refinement_or_aggregate_coding && bitmap_coding_context_retained)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid bitmap_coding_context_retained");
u8 template_used = (flags >> 10) & 0b11; // "SDTEMPLATE" in spec.
if (uses_huffman_encoding && template_used != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid template_used");
u8 refinement_template_used = (flags >> 12) & 0b11; // "SDREFTEMPLATE" in spec.
if (!uses_refinement_or_aggregate_coding && refinement_template_used != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template_used");
if (flags & 0b1110'0000'0000'0000)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid symbol dictionary flags");
// 7.4.2.1.2 Symbol dictionary AT flags
Array<AdaptiveTemplatePixel, 4> adaptive_template {};
if (!uses_huffman_encoding) {
int number_of_adaptive_template_pixels = template_used == 0 ? 4 : 1;
for (int i = 0; i < number_of_adaptive_template_pixels; ++i) {
adaptive_template[i].x = TRY(stream.read_value<i8>());
adaptive_template[i].y = TRY(stream.read_value<i8>());
}
}
// 7.4.2.1.3 Symbol dictionary refinement AT flags
Array<AdaptiveTemplatePixel, 2> adaptive_refinement_template {};
if (uses_refinement_or_aggregate_coding && refinement_template_used == 0) {
for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) {
adaptive_refinement_template[i].x = TRY(stream.read_value<i8>());
adaptive_refinement_template[i].y = TRY(stream.read_value<i8>());
}
}
// 7.4.2.1.4 Number of exported symbols (SDNUMEXSYMS)
u32 number_of_exported_symbols = TRY(stream.read_value<BigEndian<u32>>());
// 7.4.2.1.5 Number of new symbols (SDNUMNEWSYMS)
u32 number_of_new_symbols = TRY(stream.read_value<BigEndian<u32>>());
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_huffman_encoding={}", uses_huffman_encoding);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_refinement_or_aggregate_coding={}", uses_refinement_or_aggregate_coding);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_height_differences={}", huffman_table_selection_for_height_differences);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: huffman_table_selection_for_width_differences={}", huffman_table_selection_for_width_differences);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_size_table={}", uses_user_supplied_size_table);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: uses_user_supplied_aggregate_table={}", uses_user_supplied_aggregate_table);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_used={}", bitmap_coding_context_used);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: bitmap_coding_context_retained={}", bitmap_coding_context_retained);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: template_used={}", template_used);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: refinement_template_used={}", refinement_template_used);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_exported_symbols={}", number_of_exported_symbols);
dbgln_if(JBIG2_DEBUG, "Symbol dictionary: number_of_new_symbols={}", number_of_new_symbols);
// 7.4.2.1.6 Symbol dictionary segment Huffman table selection
// FIXME
// 7.4.2.2 Decoding a symbol dictionary segment
// "1) Interpret its header, as described in 7.4.2.1."
// Done!
// "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments."
Vector<NonnullRefPtr<Symbol>> symbols;
for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) {
auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number);
if (!opt_referred_to_segment.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment refers to non-existent segment");
dbgln_if(JBIG2_DEBUG, "Symbol segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value());
auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()];
if (!referred_to_segment.symbols.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Symbol segment referred-to segment without symbols");
symbols.extend(referred_to_segment.symbols.value());
}
// "3) If the "bitmap coding context used" bit in the header was 1, ..."
if (bitmap_coding_context_used)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode bitmap coding context segment yet");
// "4) If the "bitmap coding context used" bit in the header was 0, then, as described in E.3.7,
// reset all the arithmetic coding statistics for the generic region and generic refinement region decoding procedures to zero."
// Nothing to do.
// "5) Reset the arithmetic coding statistics for all the contexts of all the arithmetic integer coders to zero."
// FIXME
// "6) Invoke the symbol dictionary decoding procedure described in 6.5, with the parameters to the symbol dictionary decoding procedure set as shown in Table 31."
SymbolDictionaryDecodingInputParameters inputs;
inputs.uses_huffman_encoding = uses_huffman_encoding;
inputs.uses_refinement_or_aggregate_coding = uses_refinement_or_aggregate_coding;
inputs.input_symbols = move(symbols);
inputs.number_of_new_symbols = number_of_new_symbols;
inputs.number_of_exported_symbols = number_of_exported_symbols;
// FIXME: SDHUFFDH, SDHUFFDW, SDHUFFBMSIZE, SDHUFFAGGINST
inputs.symbol_template = template_used;
inputs.adaptive_template_pixels = adaptive_template;
inputs.refinement_template = refinement_template_used;
inputs.refinement_adaptive_template_pixels = adaptive_refinement_template;
auto result = TRY(symbol_dictionary_decoding_procedure(inputs, segment.data.slice(TRY(stream.tell()))));
// "7) If the "bitmap coding context retained" bit in the header was 1, then, as described in E.3.8, preserve the current contents
// of the arithmetic coding statistics for the generic region and generic refinement region decoding procedures."
if (bitmap_coding_context_retained)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot retain bitmap coding context yet");
segment.symbols = move(result);
return {};
}
static ErrorOr<void> decode_intermediate_text_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate text region yet");
}
static ErrorOr<void> decode_immediate_text_region(JBIG2LoadingContext& context, SegmentData const& segment)
{
// 7.4.3 Text region segment syntax
auto data = segment.data;
auto information_field = TRY(decode_region_segment_information_field(data));
data = data.slice(sizeof(information_field));
dbgln_if(JBIG2_DEBUG, "Text region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags);
FixedMemoryStream stream(data);
// 7.4.3.1.1 Text region segment flags
u16 text_region_segment_flags = TRY(stream.read_value<BigEndian<u16>>());
bool uses_huffman_encoding = (text_region_segment_flags & 1) != 0; // "SBHUFF" in spec.
bool uses_refinement_coding = (text_region_segment_flags >> 1) & 1; // "SBREFINE" in spec.
u8 log_strip_size = (text_region_segment_flags >> 2) & 3; // "LOGSBSTRIPS" in spec.
u8 strip_size = 1u << log_strip_size;
u8 reference_corner = (text_region_segment_flags >> 4) & 3; // "REFCORNER"
bool is_transposed = (text_region_segment_flags >> 6) & 1; // "TRANSPOSED" in spec.
u8 combination_operator = (text_region_segment_flags >> 7) & 3; // "SBCOMBOP" in spec.
if (combination_operator > 4)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid text region combination operator");
u8 default_pixel_value = (text_region_segment_flags >> 9) & 1; // "SBDEFPIXEL" in spec.
u8 delta_s_offset_value = (text_region_segment_flags >> 10) & 0x1f; // "SBDSOFFSET" in spec.
i8 delta_s_offset = delta_s_offset_value;
if (delta_s_offset_value & 0x10) {
delta_s_offset = AK::sign_extend(delta_s_offset_value, 5);
}
u8 refinement_template = (text_region_segment_flags >> 15) != 0; // "SBRTEMPLATE" in spec.
if (!uses_refinement_coding && refinement_template != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid refinement_template");
// 7.4.3.1.2 Text region segment Huffman flags
// "This field is only present if SBHUFF is 1."
// FIXME: Support this eventually.
if (uses_huffman_encoding)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode huffman text regions yet");
// 7.4.3.1.3 Text region refinement AT flags
// "This field is only present if SBREFINE is 1 and SBRTEMPLATE is 0."
Array<AdaptiveTemplatePixel, 2> adaptive_refinement_template {};
if (uses_refinement_coding && refinement_template == 0) {
for (size_t i = 0; i < adaptive_refinement_template.size(); ++i) {
adaptive_refinement_template[i].x = TRY(stream.read_value<i8>());
adaptive_refinement_template[i].y = TRY(stream.read_value<i8>());
}
}
// 7.4.3.1.4 Number of symbol instances (SBNUMINSTANCES)
u32 number_of_symbol_instances = TRY(stream.read_value<BigEndian<u32>>());
// 7.4.3.1.5 Text region segment symbol ID Huffman decoding table
// "It is only present if SBHUFF is 1."
// FIXME: Support this eventually.
dbgln_if(JBIG2_DEBUG, "Text region: uses_huffman_encoding={}, uses_refinement_coding={}, strip_size={}, reference_corner={}, is_transposed={}", uses_huffman_encoding, uses_refinement_coding, strip_size, reference_corner, is_transposed);
dbgln_if(JBIG2_DEBUG, "Text region: combination_operator={}, default_pixel_value={}, delta_s_offset={}, refinement_template={}, number_of_symbol_instances={}", combination_operator, default_pixel_value, delta_s_offset, refinement_template, number_of_symbol_instances);
dbgln_if(JBIG2_DEBUG, "Text region: number_of_symbol_instances={}", number_of_symbol_instances);
// 7.4.3.2 Decoding a text region segment
// "1) Interpret its header, as described in 7.4.3.1."
// Done!
// "2) Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments."
Vector<NonnullRefPtr<Symbol>> symbols;
for (auto referred_to_segment_number : segment.header.referred_to_segment_numbers) {
auto opt_referred_to_segment = context.segments_by_number.get(referred_to_segment_number);
if (!opt_referred_to_segment.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment refers to non-existent segment");
dbgln_if(JBIG2_DEBUG, "Text segment refers to segment id {} index {}", referred_to_segment_number, opt_referred_to_segment.value());
auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()];
if (!referred_to_segment.symbols.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Text segment referred-to segment without symbols");
symbols.extend(referred_to_segment.symbols.value());
}
// "3) As described in E.3.7, reset all the arithmetic coding statistics to zero."
// FIXME
// "4) Invoke the text region decoding procedure described in 6.4, with the parameters to the text region decoding procedure set as shown in Table 34."
TextRegionDecodingInputParameters inputs;
inputs.uses_huffman_encoding = uses_huffman_encoding;
inputs.uses_refinement_coding = uses_refinement_coding;
inputs.default_pixel = default_pixel_value;
inputs.operator_ = static_cast<CombinationOperator>(combination_operator);
inputs.is_transposed = is_transposed;
inputs.reference_corner = static_cast<TextRegionDecodingInputParameters::Corner>(reference_corner);
inputs.delta_s_offset = delta_s_offset;
inputs.region_width = information_field.width;
inputs.region_height = information_field.height;
inputs.number_of_instances = number_of_symbol_instances;
inputs.size_of_symbol_instance_strips = strip_size;
inputs.id_symbol_code_length = ceil(log2(symbols.size()));
inputs.symbols = move(symbols);
// FIXME: Huffman tables.
inputs.refinement_template = refinement_template;
inputs.refinement_adaptive_template_pixels = adaptive_refinement_template;
auto result = TRY(text_region_decoding_procedure(inputs, data.slice(TRY(stream.tell()))));
composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator());
return {};
}
static ErrorOr<void> decode_pattern_dictionary(JBIG2LoadingContext&, SegmentData& segment)
{
// 7.4.4 Pattern dictionary segment syntax
FixedMemoryStream stream(segment.data);
// 7.4.4.1.1 Pattern dictionary flags
u8 flags = TRY(stream.read_value<u8>());
bool uses_mmr = flags & 1;
u8 hd_template = (flags >> 1) & 3;
if (uses_mmr && hd_template != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid hd_template");
if (flags & 0b1111'1000)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid flags");
// 7.4.4.1.2 Width of the patterns in the pattern dictionary (HDPW)
u8 width = TRY(stream.read_value<u8>());
if (width == 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid width");
// 7.4.4.1.3 Height of the patterns in the pattern dictionary (HDPH)
u8 height = TRY(stream.read_value<u8>());
if (height == 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid height");
// 7.4.4.1.4 Largest gray-scale value (GRAYMAX)
u32 gray_max = TRY(stream.read_value<BigEndian<u32>>());
// 7.4.4.2 Decoding a pattern dictionary segment
dbgln_if(JBIG2_DEBUG, "Pattern dictionary: uses_mmr={}, hd_template={}, width={}, height={}, gray_max={}", uses_mmr, hd_template, width, height, gray_max);
auto data = segment.data.slice(TRY(stream.tell()));
// "1) Interpret its header, as described in 7.4.4.1."
// Done!
// "2) As described in E.3.7, reset all the arithmetic coding statistics to zero."
Vector<QMArithmeticDecoder::Context> contexts;
if (!uses_mmr)
contexts.resize(1 << number_of_context_bits_for_template(hd_template));
// "3) Invoke the pattern dictionary decoding procedure described in 6.7, with the parameters to the pattern
// dictionary decoding procedure set as shown in Table 35."
PatternDictionaryDecodingInputParameters inputs;
inputs.uses_mmr = uses_mmr;
inputs.width = width;
inputs.height = height;
inputs.gray_max = gray_max;
inputs.hd_template = hd_template;
auto result = TRY(pattern_dictionary_decoding_procedure(inputs, data, contexts));
segment.patterns = move(result);
return {};
}
static ErrorOr<void> decode_intermediate_halftone_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate halftone region yet");
}
static ErrorOr<void> decode_immediate_halftone_region(JBIG2LoadingContext& context, SegmentData const& segment)
{
// 7.4.5 Halftone region segment syntax
auto data = segment.data;
auto information_field = TRY(decode_region_segment_information_field(data));
data = data.slice(sizeof(information_field));
dbgln_if(JBIG2_DEBUG, "Halftone region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags);
FixedMemoryStream stream(data);
// 7.4.5.1.1 Halftone region segment flags
u8 flags = TRY(stream.read_value<u8>());
bool uses_mmr = flags & 1; // "HMMR" in spec.
u8 template_used = (flags >> 1) & 3; // "HTTEMPLATE" in spec.
if (uses_mmr && template_used != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid template_used");
bool enable_skip = (flags >> 3) & 1; // "HENABLESKIP" in spec.
u8 combination_operator = (flags >> 4) & 7; // "HCOMBOP" in spec.
if (combination_operator > 4)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid combination_operator");
bool default_pixel_value = (flags >> 7) & 1; // "HDEFPIXEL" in spec.
dbgln_if(JBIG2_DEBUG, "Halftone region: uses_mmr={}, template_used={}, enable_skip={}, combination_operator={}, default_pixel_value={}", uses_mmr, template_used, enable_skip, combination_operator, default_pixel_value);
// 7.4.5.1.2 Halftone grid position and size
// 7.4.5.1.2.1 Width of the gray-scale image (HGW)
u32 gray_width = TRY(stream.read_value<BigEndian<u32>>());
// 7.4.5.1.2.2 Height of the gray-scale image (HGH)
u32 gray_height = TRY(stream.read_value<BigEndian<u32>>());
// 7.4.5.1.2.3 Horizontal offset of the grid (HGX)
i32 grid_x = TRY(stream.read_value<BigEndian<i32>>());
// 7.4.5.1.2.4 Vertical offset of the grid (HGY)
i32 grid_y = TRY(stream.read_value<BigEndian<i32>>());
// 7.4.5.1.3 Halftone grid vector
// 7.4.5.1.3.1 Horizontal coordinate of the halftone grid vector (HRX)
u16 grid_vector_x = TRY(stream.read_value<BigEndian<u16>>());
// 7.4.5.1.3.2 Vertical coordinate of the halftone grid vector (HRY)
u16 grid_vector_y = TRY(stream.read_value<BigEndian<u16>>());
dbgln_if(JBIG2_DEBUG, "Halftone region: gray_width={}, gray_height={}, grid_x={}, grid_y={}, grid_vector_x={}, grid_vector_y={}", gray_width, gray_height, grid_x, grid_y, grid_vector_x, grid_vector_y);
// 7.4.5.2 Decoding a halftone region segment
// "1) Interpret its header, as described in 7.4.5.1."
// Done!
// "2) Decode (or retrieve the results of decoding) the referred-to pattern dictionary segment."
if (segment.header.referred_to_segment_numbers.size() != 1)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Halftone segment refers to wrong number of segments");
auto opt_referred_to_segment = context.segments_by_number.get(segment.header.referred_to_segment_numbers[0]);
if (!opt_referred_to_segment.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Halftone segment refers to non-existent segment");
dbgln_if(JBIG2_DEBUG, "Halftone segment refers to segment id {} index {}", segment.header.referred_to_segment_numbers[0], opt_referred_to_segment.value());
auto const& referred_to_segment = context.segments[opt_referred_to_segment.value()];
if (!referred_to_segment.patterns.has_value())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Halftone segment referred-to segment without patterns");
Vector<NonnullRefPtr<Symbol>> patterns = referred_to_segment.patterns.value();
if (patterns.is_empty())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Halftone segment without patterns");
// "3) As described in E.3.7, reset all the arithmetic coding statistics to zero."
Vector<QMArithmeticDecoder::Context> contexts;
if (!uses_mmr)
contexts.resize(1 << number_of_context_bits_for_template(template_used));
// "4) Invoke the halftone region decoding procedure described in 6.6, with the parameters to the halftone
// region decoding procedure set as shown in Table 36."
data = data.slice(TRY(stream.tell()));
HalftoneRegionDecodingInputParameters inputs;
inputs.region_width = information_field.width;
inputs.region_height = information_field.height;
inputs.uses_mmr = uses_mmr;
inputs.halftone_template = template_used;
inputs.enable_skip = enable_skip;
inputs.combination_operator = static_cast<CombinationOperator>(combination_operator);
inputs.default_pixel_value = default_pixel_value;
inputs.grayscale_width = gray_width;
inputs.grayscale_height = gray_height;
inputs.grid_origin_x_offset = grid_x;
inputs.grid_origin_y_offset = grid_y;
inputs.grid_vector_x = grid_vector_x;
inputs.grid_vector_y = grid_vector_y;
inputs.patterns = move(patterns);
inputs.pattern_width = inputs.patterns[0]->bitmap().width();
inputs.pattern_height = inputs.patterns[0]->bitmap().height();
auto result = TRY(halftone_region_decoding_procedure(inputs, data, contexts));
composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator());
return {};
}
static ErrorOr<void> decode_immediate_lossless_halftone_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless halftone region yet");
}
static ErrorOr<void> decode_intermediate_generic_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic region yet");
}
static ErrorOr<void> decode_immediate_generic_region(JBIG2LoadingContext& context, SegmentData const& segment)
{
// 7.4.6 Generic region segment syntax
auto data = segment.data;
auto information_field = TRY(decode_region_segment_information_field(data));
data = data.slice(sizeof(information_field));
dbgln_if(JBIG2_DEBUG, "Generic region: width={}, height={}, x={}, y={}, flags={:#x}", information_field.width, information_field.height, information_field.x_location, information_field.y_location, information_field.flags);
// 7.4.6.2 Generic region segment flags
if (data.is_empty())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No segment data");
u8 flags = data[0];
bool uses_mmr = (flags & 1) != 0;
u8 arithmetic_coding_template = (flags >> 1) & 3; // "GBTEMPLATE"
bool typical_prediction_generic_decoding_on = (flags >> 3) & 1; // "TPGDON"; "TPGD" is short for "Typical Prediction for Generic Direct coding"
bool uses_extended_reference_template = (flags >> 4) & 1; // "EXTTEMPLATE"
if (flags & 0b1110'0000)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid flags");
data = data.slice(sizeof(flags));
// 7.4.6.3 Generic region segment AT flags
Array<AdaptiveTemplatePixel, 12> adaptive_template_pixels {};
if (!uses_mmr) {
dbgln_if(JBIG2_DEBUG, "Non-MMR generic region, GBTEMPLATE={} TPGDON={} EXTTEMPLATE={}", arithmetic_coding_template, typical_prediction_generic_decoding_on, uses_extended_reference_template);
if (arithmetic_coding_template == 0 && uses_extended_reference_template) {
// This was added in T.88 Amendment 2 (https://www.itu.int/rec/T-REC-T.88-200306-S!Amd2/en) mid-2003.
// I haven't seen it being used in the wild, and the spec says "32-byte field as shown below" and then shows 24 bytes,
// so it's not clear how much data to read.
return Error::from_string_literal("JBIG2ImageDecoderPlugin: GBTEMPLATE=0 EXTTEMPLATE=1 not yet implemented");
}
size_t number_of_adaptive_template_pixels = arithmetic_coding_template == 0 ? 4 : 1;
if (data.size() < 2 * number_of_adaptive_template_pixels)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: No adaptive template data");
for (size_t i = 0; i < number_of_adaptive_template_pixels; ++i) {
adaptive_template_pixels[i].x = static_cast<i8>(data[2 * i]);
adaptive_template_pixels[i].y = static_cast<i8>(data[2 * i + 1]);
}
data = data.slice(2 * number_of_adaptive_template_pixels);
}
// 7.4.6.4 Decoding a generic region segment
// "1) Interpret its header, as described in 7.4.6.1"
// Done above.
// "2) As described in E.3.7, reset all the arithmetic coding statistics to zero."
Vector<QMArithmeticDecoder::Context> contexts;
contexts.resize(1 << number_of_context_bits_for_template(arithmetic_coding_template));
// "3) Invoke the generic region decoding procedure described in 6.2, with the parameters to the generic region decoding procedure set as shown in Table 37."
GenericRegionDecodingInputParameters inputs;
inputs.is_modified_modified_read = uses_mmr;
inputs.region_width = information_field.width;
inputs.region_height = information_field.height;
inputs.gb_template = arithmetic_coding_template;
inputs.is_typical_prediction_used = typical_prediction_generic_decoding_on;
inputs.is_extended_reference_template_used = uses_extended_reference_template;
inputs.skip_pattern = OptionalNone {};
inputs.adaptive_template_pixels = adaptive_template_pixels;
Optional<QMArithmeticDecoder> decoder;
if (!uses_mmr) {
decoder = TRY(QMArithmeticDecoder::initialize(data));
inputs.arithmetic_decoder = &decoder.value();
}
auto result = TRY(generic_region_decoding_procedure(inputs, data, contexts));
// 8.2 Page image composition step 5)
if (information_field.x_location + information_field.width > (u32)context.page.size.width()
|| information_field.y_location + information_field.height > (u32)context.page.size.height()) {
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Region bounds outsize of page bounds");
}
composite_bitbuffer(*context.page.bits, *result, { information_field.x_location, information_field.y_location }, information_field.external_combination_operator());
return {};
}
static ErrorOr<void> decode_intermediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode intermediate generic refinement region yet");
}
static ErrorOr<void> decode_immediate_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate generic refinement region yet");
}
static ErrorOr<void> decode_immediate_lossless_generic_refinement_region(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode immediate lossless generic refinement region yet");
}
static ErrorOr<void> decode_page_information(JBIG2LoadingContext& context, SegmentData const& segment)
{
// 7.4.8 Page information segment syntax and 8.1 Decoder model steps 1) - 3).
// "1) Decode the page information segment.""
auto page_information = TRY(decode_page_information_segment(segment.data));
bool page_is_striped = (page_information.striping_information & 0x80) != 0;
if (page_information.bitmap_height == 0xffff'ffff && !page_is_striped)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Non-striped bitmaps of indeterminate height not allowed");
u16 maximum_stripe_height = page_information.striping_information & 0x7F;
u8 default_color = (page_information.flags >> 2) & 1;
u8 default_combination_operator = (page_information.flags >> 3) & 3;
context.page.default_combination_operator = static_cast<CombinationOperator>(default_combination_operator);
dbgln_if(JBIG2_DEBUG, "Page information: width={}, height={}, is_striped={}, max_stripe_height={}, default_color={}, default_combination_operator={}", page_information.bitmap_width, page_information.bitmap_height, page_is_striped, maximum_stripe_height, default_color, default_combination_operator);
// FIXME: Do something with the other fields in page_information.
// "2) Create the page buffer, of the size given in the page information segment.
//
// If the page height is unknown, then this is not possible. However, in this case the page must be striped,
// and the maximum stripe height specified, and the initial page buffer can be created with height initially
// equal to this maximum stripe height."
size_t height = page_information.bitmap_height;
if (height == 0xffff'ffff)
height = maximum_stripe_height;
context.page.bits = TRY(BitBuffer::create(page_information.bitmap_width, height));
// "3) Fill the page buffer with the page's default pixel value."
context.page.bits->fill(default_color != 0);
return {};
}
static ErrorOr<void> decode_end_of_page(JBIG2LoadingContext&, SegmentData const& segment)
{
// 7.4.9 End of page segment syntax
if (segment.data.size() != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of page segment has non-zero size");
// FIXME: If the page had unknown height, check that previous segment was end-of-stripe.
// FIXME: Maybe mark page as completed and error if we see more segments for it?
return {};
}
static ErrorOr<void> decode_end_of_stripe(JBIG2LoadingContext&, SegmentData const& segment)
{
// 7.4.10 End of stripe segment syntax
// "The segment data of an end of stripe segment consists of one four-byte value, specifying the Y coordinate of the end row."
if (segment.data.size() != 4)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of strip segment has wrong size");
// FIXME: Once we implement support for images with initially indeterminate height, we need these values to determine the height at the end.
u32 y_coordinate = *reinterpret_cast<BigEndian<u32> const*>(segment.data.data());
dbgln_if(JBIG2_DEBUG, "End of stripe: y={}", y_coordinate);
return {};
}
static ErrorOr<void> decode_end_of_file(JBIG2LoadingContext&, SegmentData const& segment)
{
// 7.4.11 End of file segment syntax
if (segment.data.size() != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment has non-zero size");
return {};
}
static ErrorOr<void> decode_profiles(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode profiles yet");
}
static ErrorOr<void> decode_tables(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode tables yet");
}
static ErrorOr<void> decode_color_palette(JBIG2LoadingContext&, SegmentData const&)
{
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Cannot decode color palette yet");
}
static ErrorOr<void> decode_extension(JBIG2LoadingContext&, SegmentData const& segment)
{
// 7.4.14 Extension segment syntax
FixedMemoryStream stream { segment.data };
enum ExtensionType {
SingleByteCodedComment = 0x20000000,
MultiByteCodedComment = 0x20000002,
};
u32 type = TRY(stream.read_value<BigEndian<u32>>());
auto read_string = [&]<class T>() -> ErrorOr<Vector<T>> {
Vector<T> result;
do {
result.append(TRY(stream.read_value<BigEndian<T>>()));
} while (result.last());
result.take_last();
return result;
};
switch (type) {
case SingleByteCodedComment: {
// 7.4.15.1 Single-byte coded comment
// Pairs of zero-terminated ISO/IEC 8859-1 (latin1) pairs, terminated by another \0.
while (true) {
auto first_bytes = TRY(read_string.template operator()<u8>());
if (first_bytes.is_empty())
break;
auto second_bytes = TRY(read_string.template operator()<u8>());
auto first = TRY(TextCodec::decoder_for_exact_name("ISO-8859-1"sv)->to_utf8(StringView { first_bytes }));
auto second = TRY(TextCodec::decoder_for_exact_name("ISO-8859-1"sv)->to_utf8(StringView { second_bytes }));
dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second);
}
if (!stream.is_eof())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after SingleByteCodedComment");
return {};
}
case MultiByteCodedComment: {
// 7.4.15.2 Multi-byte coded comment
// Pairs of (two-byte-)zero-terminated UCS-2 pairs, terminated by another \0\0.
while (true) {
auto first_ucs2 = TRY(read_string.template operator()<u16>());
if (first_ucs2.is_empty())
break;
auto second_ucs2 = TRY(read_string.template operator()<u16>());
auto first = TRY(Utf16View(first_ucs2).to_utf8());
auto second = TRY(Utf16View(second_ucs2).to_utf8());
dbgln("JBIG2ImageDecoderPlugin: key '{}', value '{}'", first, second);
}
if (!stream.is_eof())
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Trailing data after MultiByteCodedComment");
return {};
}
}
// FIXME: If bit 31 in `type` is not set, the extension isn't necessary, and we could ignore it.
dbgln("JBIG2ImageDecoderPlugin: Unknown extension type {:#x}", type);
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Unknown extension type");
}
static ErrorOr<void> decode_data(JBIG2LoadingContext& context)
{
TRY(warn_about_multiple_pages(context));
for (size_t i = 0; i < context.segments.size(); ++i) {
auto& segment = context.segments[i];
if (segment.header.page_association != 0 && segment.header.page_association != 1)
continue;
switch (segment.header.type) {
case SegmentType::SymbolDictionary:
TRY(decode_symbol_dictionary(context, segment));
break;
case SegmentType::IntermediateTextRegion:
TRY(decode_intermediate_text_region(context, segment));
break;
case SegmentType::ImmediateTextRegion:
case SegmentType::ImmediateLosslessTextRegion:
// 7.4.3 Text region segment syntax
// "The data parts of all three of the text region segment types ("intermediate text region", "immediate text region" and
// "immediate lossless text region") are coded identically, but are acted upon differently, see 8.2."
// But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell,
// and calling the immediate text region handler for immediate lossless text regions seems to do the right thing (?).
TRY(decode_immediate_text_region(context, segment));
break;
case SegmentType::PatternDictionary:
TRY(decode_pattern_dictionary(context, segment));
break;
case SegmentType::IntermediateHalftoneRegion:
TRY(decode_intermediate_halftone_region(context, segment));
break;
case SegmentType::ImmediateHalftoneRegion:
TRY(decode_immediate_halftone_region(context, segment));
break;
case SegmentType::ImmediateLosslessHalftoneRegion:
TRY(decode_immediate_lossless_halftone_region(context, segment));
break;
case SegmentType::IntermediateGenericRegion:
TRY(decode_intermediate_generic_region(context, segment));
break;
case SegmentType::ImmediateGenericRegion:
case SegmentType::ImmediateLosslessGenericRegion:
// 7.4.6 Generic region segment syntax
// "The data parts of all three of the generic region segment types ("intermediate generic region", "immediate generic region" and
// "immediate lossless generic region") are coded identically, but are acted upon differently, see 8.2."
// But 8.2 only describes a difference between intermediate and immediate regions as far as I can tell,
// and calling the immediate generic region handler for immediate generic lossless regions seems to do the right thing (?).
TRY(decode_immediate_generic_region(context, segment));
break;
case SegmentType::IntermediateGenericRefinementRegion:
TRY(decode_intermediate_generic_refinement_region(context, segment));
break;
case SegmentType::ImmediateGenericRefinementRegion:
TRY(decode_immediate_generic_refinement_region(context, segment));
break;
case SegmentType::ImmediateLosslessGenericRefinementRegion:
TRY(decode_immediate_lossless_generic_refinement_region(context, segment));
break;
case SegmentType::PageInformation:
TRY(decode_page_information(context, segment));
break;
case SegmentType::EndOfPage:
TRY(decode_end_of_page(context, segment));
break;
case SegmentType::EndOfStripe:
TRY(decode_end_of_stripe(context, segment));
break;
case SegmentType::EndOfFile:
TRY(decode_end_of_file(context, segment));
// "If a file contains an end of file segment, it must be the last segment."
if (i != context.segments.size() - 1)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: End of file segment not last segment");
break;
case SegmentType::Profiles:
TRY(decode_profiles(context, segment));
break;
case SegmentType::Tables:
TRY(decode_tables(context, segment));
break;
case SegmentType::ColorPalette:
TRY(decode_color_palette(context, segment));
break;
case SegmentType::Extension:
TRY(decode_extension(context, segment));
break;
}
}
return {};
}
JBIG2ImageDecoderPlugin::JBIG2ImageDecoderPlugin()
{
m_context = make<JBIG2LoadingContext>();
}
JBIG2ImageDecoderPlugin::~JBIG2ImageDecoderPlugin() = default;
IntSize JBIG2ImageDecoderPlugin::size()
{
return m_context->page.size;
}
bool JBIG2ImageDecoderPlugin::sniff(ReadonlyBytes data)
{
return data.starts_with(id_string);
}
ErrorOr<NonnullOwnPtr<ImageDecoderPlugin>> JBIG2ImageDecoderPlugin::create(ReadonlyBytes data)
{
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin()));
TRY(decode_jbig2_header(*plugin->m_context, data));
data = data.slice(sizeof(id_string) + sizeof(u8) + (plugin->m_context->number_of_pages.has_value() ? sizeof(u32) : 0));
TRY(decode_segment_headers(*plugin->m_context, data));
TRY(scan_for_page_size(*plugin->m_context));
return plugin;
}
ErrorOr<ImageFrameDescriptor> JBIG2ImageDecoderPlugin::frame(size_t index, Optional<IntSize>)
{
// FIXME: Use this for multi-page JBIG2 files?
if (index != 0)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Invalid frame index");
if (m_context->state == JBIG2LoadingContext::State::Error)
return Error::from_string_literal("JBIG2ImageDecoderPlugin: Decoding failed");
if (m_context->state < JBIG2LoadingContext::State::Decoded) {
auto result = decode_data(*m_context);
if (result.is_error()) {
m_context->state = JBIG2LoadingContext::State::Error;
return result.release_error();
}
m_context->state = JBIG2LoadingContext::State::Decoded;
}
auto bitmap = TRY(m_context->page.bits->to_gfx_bitmap());
return ImageFrameDescriptor { move(bitmap), 0 };
}
ErrorOr<ByteBuffer> JBIG2ImageDecoderPlugin::decode_embedded(Vector<ReadonlyBytes> data)
{
auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JBIG2ImageDecoderPlugin()));
plugin->m_context->organization = Organization::Embedded;
for (auto const& segment_data : data)
TRY(decode_segment_headers(*plugin->m_context, segment_data));
TRY(scan_for_page_size(*plugin->m_context));
TRY(decode_data(*plugin->m_context));
return plugin->m_context->page.bits->to_byte_buffer();
}
}