Newer
Older
minerva / Userland / Libraries / LibCrypto / Authentication / GHash.cpp
@minerva minerva on 13 Jul 3 KB Initial commit
/*
 * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/ByteReader.h>
#include <AK/Debug.h>
#include <AK/Types.h>
#include <LibCrypto/Authentication/GHash.h>

namespace {

static u32 to_u32(u8 const* b)
{
    return AK::convert_between_host_and_big_endian(ByteReader::load32(b));
}

static void to_u8s(u8* b, u32 const* w)
{
    for (auto i = 0; i < 4; ++i) {
        ByteReader::store(b + i * 4, AK::convert_between_host_and_big_endian(w[i]));
    }
}

}

namespace Crypto::Authentication {

GHash::TagType GHash::process(ReadonlyBytes aad, ReadonlyBytes cipher)
{
    u32 tag[4] { 0, 0, 0, 0 };

    auto transform_one = [&](auto& buf) {
        size_t i = 0;
        for (; i < buf.size(); i += 16) {
            if (i + 16 <= buf.size()) {
                for (auto j = 0; j < 4; ++j) {
                    tag[j] ^= to_u32(buf.offset(i + j * 4));
                }
                galois_multiply(tag, m_key, tag);
            }
        }

        if (i > buf.size()) {
            u8 buffer[16] = {};
            Bytes buffer_bytes { buffer, 16 };
            buf.slice(i - 16).copy_to(buffer_bytes);

            for (auto j = 0; j < 4; ++j) {
                tag[j] ^= to_u32(buffer_bytes.offset(j * 4));
            }
            galois_multiply(tag, m_key, tag);
        }
    };

    transform_one(aad);
    transform_one(cipher);

    auto aad_bits = 8 * (u64)aad.size();
    auto cipher_bits = 8 * (u64)cipher.size();

    auto high = [](u64 value) -> u32 { return value >> 32; };
    auto low = [](u64 value) -> u32 { return value & 0xffffffff; };

    if constexpr (GHASH_PROCESS_DEBUG) {
        dbgln("AAD bits: {} : {}", high(aad_bits), low(aad_bits));
        dbgln("Cipher bits: {} : {}", high(cipher_bits), low(cipher_bits));
        dbgln("Tag bits: {} : {} : {} : {}", tag[0], tag[1], tag[2], tag[3]);
    }

    tag[0] ^= high(aad_bits);
    tag[1] ^= low(aad_bits);
    tag[2] ^= high(cipher_bits);
    tag[3] ^= low(cipher_bits);

    dbgln_if(GHASH_PROCESS_DEBUG, "Tag bits: {} : {} : {} : {}", tag[0], tag[1], tag[2], tag[3]);

    galois_multiply(tag, m_key, tag);

    TagType digest;
    to_u8s(digest.data, tag);

    return digest;
}

/// Galois Field multiplication using <x^127 + x^7 + x^2 + x + 1>.
/// Note that x, y, and z are strictly BE.
void galois_multiply(u32 (&_z)[4], u32 const (&_x)[4], u32 const (&_y)[4])
{
    // Note: Copied upfront to stack to avoid memory access in the loop.
    u32 x[4] { _x[0], _x[1], _x[2], _x[3] };
    u32 const y[4] { _y[0], _y[1], _y[2], _y[3] };
    u32 z[4] { 0, 0, 0, 0 };

    // Unrolled by 32, the access in y[3-(i/32)] can be cached throughout the loop.
#pragma GCC unroll 32
    for (ssize_t i = 127, j = 0; i > -1; --i, j++) {
        auto r = -((y[j / 32] >> (i % 32)) & 1);
        z[0] ^= x[0] & r;
        z[1] ^= x[1] & r;
        z[2] ^= x[2] & r;
        z[3] ^= x[3] & r;
        auto a0 = x[0] & 1;
        x[0] >>= 1;
        auto a1 = x[1] & 1;
        x[1] >>= 1;
        x[1] |= a0 << 31;
        auto a2 = x[2] & 1;
        x[2] >>= 1;
        x[2] |= a1 << 31;
        auto a3 = x[3] & 1;
        x[3] >>= 1;
        x[3] |= a2 << 31;

        x[0] ^= 0xe1000000 & -a3;
    }

    memcpy(_z, z, sizeof(z));
}

}